Abstract
We present a new spectral element method for solving partial integro-differential equations for pricing European options under the Black–Scholes and Merton jump diffusion models. Our main contributions are: (i) using an optimal set of orthogonal polynomial bases to yield banded linear systems and to achieve spectral accuracy; (ii) using Laguerre functions for the approximations on the semi-infinite domain, to avoid the domain truncation; and (iii) deriving a rigorous proof of stability for the time discretizations of European put options under both the Black–Scholes model and the Merton jump diffusion model. The new method is flexible for handling different boundary conditions and non-smooth initial conditions for various contingent claims. Numerical examples are presented to demonstrate the efficiency and accuracy of the new method.
Similar content being viewed by others
References
Achdou, Y., Pironneau, O.: Computational Methods for Option Pricing (Frontiers in Applied Mathematics). Frontiers in Applied Mathematics, vol. 30. Society for Industrial and Applied Mathematics, Philadelphia (2005)
Almendral, A., Oosterlee, C.W.: Numerical valuation of options with jumps in the underlying. Appl. Numer. Math. 53(1), 1–18 (2005)
Bayraktar, E., Xing, H.: Pricing Asian options for jump diffusion. Math. Finance 21(1), 117–143 (2011)
Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81(3), 637–654 (1973). ArticleType: research-article/Full publication date: May–Jun., 1973/Copyright © 1973 The University of Chicago Press
Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover, Mineola (2001)
Carmona, R., Durrleman, V.: Pricing and hedging spread options. SIAM Rev. 45(4), 627 (2003)
Carr, P., Cousot, L.: A PDE-approach to jump-diffusions. Quant. Finance 11(1), 33 (2011)
Carr, P., Madan, D.B., Smith, R.H.: Option valuation using the fast Fourier transform. J. Comput. Finance 2, 61–73 (1999)
Chen, H., Liu, F., Reich, N., Winter, C., Zhou, A.: Two-Scale finite element discretizaitons for integrodifferential equations. To appear in J. Integral Equ. Appl. (2011)
Cont, R.: Frontiers in Quantitative Finance: Volatility and Credit Risk Modeling. Wiley, New York (2008)
Cont, R., Voltchkova, E.: A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. SIAM J. Numer. Anal. 43(4), 1596–1626 (2005)
de Frutos, J.: A spectral method for bonds. Comput. Oper. Res. 35, 64–75 (2008). ACM ID: 1268230
Deville, M.O., Fischer, P.F., Mund, E.H.: High Order Methods for Incompressible Fluid Flow, 1st edn. Cambridge University Press, Cambridge (2002)
d’Halluin, Y., Forsyth, P.A., Vetzal, K.R.: Robust numerical methods for contingent claims under jump diffusion processes. IMA J. Numer. Anal. 25(1), 87–112 (2005)
Don, W.S., Gottlieb, D.: The Chebyshev–Legendre method: implementing Legendre methods on Chebyshev points. SIAM J. Numer. Anal. 31, 1519–1534 (1994)
Evans, L.C.: Partial Differential Equations, 2nd edn. Am. Math. Soc., Providence (2010)
Feng, L., Linetsky, V.: Pricing options in jump-diffusion models: an extrapolation approach. Oper. Res. 56(2), 304–325 (2008)
Hurd, T.R., Zhou, Z.: A Fourier transform method for spread option pricing. SIAM J. Financ. Math. 1, 142–157 (2010)
Karniadakis, G.E.: Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press, London (2005)
Lamberton, D., Lapeyre, B.: Introduction to Stochastic Calculus Applied to Finance, 2nd edn. Chapman, Hall/CRC, London (2007)
Lee, R.W.: Option pricing by transform methods: extensions, unification and error control. J. Comput. Finance 7(3), 51–86 (2004)
Leentvaar, C.C.W., Oosterlee, C.W.: Multi-asset option pricing using a parallel Fourier-based technique. J. Comput. Finance 12(1), 1–26 (2008)
Ma, J., Shen, J., Zhao, Y.: On numerical approximations of forward–backward stochastic differential equations. SIAM J. Numer. Anal. 46, 2636–2661 (2008). ACM ID: 1405082
Mayo, A.: Methods for the rapid solution of the pricing PIDEs in exponential and Merton models. J. Comput. Appl. Math. 222(1), 128–143 (2008)
Merton, R.C.: Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3, 125–144 (1976)
Pooley, D.M., Vetzal, K.R., Forsyth, P.A.: Convergence remedies for non-smooth payoffs in option pricing. J. Comput. Finance 6, 25–40 (2003)
Salmi, S., Toivanen, J.: An iterative method for pricing American options under jump-diffusion models. Appl. Numer. Math. 61, 821–831 (2011)
Shen, J.: Efficient spectral-Galerkin method I: direct solvers of second-and fourth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15(6), 1489–1505 (1994)
Shen, J.: Efficient Chebyshev–Legendre Galerkin methods for elliptic problems. In: Ilin, A.V., Scott, R. (eds.) Proceedings of ICOSAHOM’95, pp. 233–240 (1996). Houston J. Math
Shen, J., Wang, L.L.: Some recent advances on spectral methods for unbounded domains. Commun. Comput. Phys. 5(2), 195–241 (2009)
Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Mathematics Monograph Series, vol. 3. Science Press, Beijing (2006)
Shen, J., Tang, T., Wang, L.-L.: Spectral Methods: Algorithms, Analysis and Applications. Springer Series in Computational Mathematics, vol. 41. Springer, Berlin (2011)
Shen, J., Yu, H.: Efficient spectral sparse grid methods and applications to high-dimensional elliptic problems. SIAM J. Sci. Comput. 32(6), 3228 (2010)
Tankov, P., Cont, R.: Financial Modelling with Jump Processes, 1st edn. Chapman and Hall/CRC, London (2003)
Toivanen, J.: Numerical valuation of European and American options under Kou’s jump-diffusion model. SIAM J. Sci. Comput. 30(4), 1949–1970 (2008)
Toivanen, J.: A high-order front-tracking finite difference method for pricing American options under jump-diffusion models. J. Comput. Finance 13(3), 61–79 (2010)
Topper, J.: Finite element methods in bond and option pricing. Soc. Comput. Econ. 131 (1999)
Zhu, W., Kopriva, D.: A spectral element approximation to price European options. II. The Black–Scholes model with two underlying assets. J. Sci. Comput. 39(3), 323–339 (2009)
Zhu, W., Kopriva, D.: A spectral element approximation to price European options with one asset and stochastic volatility. J. Sci. Comput. 42(3), 426–446 (2010)
Zhu, W., Kopriva, D.A.: A spectral element method to price European options. I. Single asset with and without jump diffusion. J. Sci. Comput. 39(2), 222–243 (2009)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is partially supported by NSF DMS-0915066 and AFOSR FA9550-08-1-0416.
Rights and permissions
About this article
Cite this article
Chen, F., Shen, J. & Yu, H. A New Spectral Element Method for Pricing European Options Under the Black–Scholes and Merton Jump Diffusion Models. J Sci Comput 52, 499–518 (2012). https://doi.org/10.1007/s10915-011-9556-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-011-9556-5