A TV Based Restoration Model with Local Constraints | Journal of Scientific Computing Skip to main content
Log in

A TV Based Restoration Model with Local Constraints

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose in this paper a total variation based restoration model which incorporates the image acquisition model z=h * U+n (where z represents the observed sampled image, U is the ideal undistorted image, h denotes the blurring kernel and n is a white Gaussian noise) as a set of local constraints. These constraints, one for each pixel of the image, express the fact that the variance of the noise can be estimated from the residuals zh * U if we use a neighborhood of each pixel. This is motivated by the fact that the usual inclusion of the image acquisition model as a single constraint expressing a bound for the variance of the noise does not give satisfactory results if we wish to simultaneously recover textured regions and obtain a good denoising of the image. We use Uzawa’s algorithm to minimize the total variation subject to the proposed family of local constraints and we display some experiments using this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acar, R., Vogel, C.R.: Analysis of total variation penalty methods for ill-posed problems. Inverse Prob. 10, 1217–1229 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Almansa, A.: Echantillonnage, interpolation et Détéction. Applications en Imagerie Satellitaire. Ph.D. thesis, Ecole Normale Supérieure de Cachan, 94235 Cachan cedex, France, December (2002)

  3. Almansa, A., Caselles, V., Haro, G., Rougé, B.: Restoration and zoom of irregularly sampled, blurred and noisy images by accurate total variation minimization with local constraints. Multiscale Model. Simul. 5(1), 235–272 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Oxford University Press, New York (2000)

    MATH  Google Scholar 

  5. Andrews, H.C., Hunt, B.R.: Digital Image Restoration. Prentice Hall, Englewood Cliffs (1977)

    Google Scholar 

  6. Bermúdez, A., Moreno, C.: Duality methods for solving variational inequalities. Comput. Math. Appl. 7(1), 43–58 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bertalmío, M., Caselles, V., Rougé, B., Solé, A.: TV based image restoration with local constraints. J. Sci. Comput. 19(1–3), 95–122 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Blanc-Féraud, L., Charbonnier, P., Aubert, G., Barlaud, M.: Nonlinear image processing: modeling and fast algorithm for regularization with edge detection. In: Proceedings of the International Conference on Image Processing, pp. 474–477 (1995)

  9. Brezis, H.: Operateurs Maximaux Monotones. North-Holland, Amsterdam (1973)

    MATH  Google Scholar 

  10. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  11. Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation based image restoration. SIAM J. Sci. Comput. 20(6), 1964–1977 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Demoment, G.: Image reconstruction and restoration: overview of common estimation structures and problems. IEEE Trans. Acoust. Speech Signal Proc. 37(12), 2024–2036 (1989)

    Article  Google Scholar 

  14. Donoho, D., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Durand, S., Malgouyres, F., Rougé, B.: Image deblurring, spectrum interpolation and application to satellite imaging. Math. Model. Numer. Anal. (1999)

  16. Faurre, P.: Analyse numérique. Notes d’optimisation. École Polytechnique. Ed. Ellipses (1988)

  17. Galatsanos, N.P., Katsaggelos, A.K.: Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation. IEEE Trans. Image Process. 1, 322–336 (1992)

    Article  Google Scholar 

  18. Gasquet, C., Witomski, P.: Analyse de Fourier et applications. Masson, Paris (1990)

    Google Scholar 

  19. Geman, D., Reynolds, G.: Constrained image restoration and recovery of discontinuities. IEEE Trans. Pattern Anal. Mach. Intell. 14, 367–383 (1992)

    Article  Google Scholar 

  20. Gilboa, G., Sochen, N., Zeevi, Y.Y.: Texture preserving variational denoising using an adaptive fidelity term. In: Proceedings VLSM, Nice, France, pp. 137–144 (2003)

  21. Katsaggelos, A.K., Biemond, J., Schafer, R.W., Merserau, R.M.: A regularized iterative image restoration algorithm. IEEE Trans. Image Process. 39, 914–929 (1991)

    Google Scholar 

  22. Koepfler, G., Lopez, C., Morel, J.M.: A multiscale algorithm for image segmentation by variational method. SIAM J. Numer. Anal. 31(1), 282–299 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lintner, S., Malgouyres, F.: Solving a variational image restoration model which involves L constraints. Inverse Prob. 20, 815–831 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Malgouyres, F.: Minimizing the total variation under a general convex constraint for image restoration. IEEE Trans. Image Process. 11, 1450–1456 (2002)

    Article  MathSciNet  Google Scholar 

  25. Malgouyres, F., Guichard, F.: Edge direction preserving image zooming: A mathematical and numerical analysis. SIAM J. Numer. Anal. 39(1), 1–37 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Malgouyres, F., Zeng, T.: A proximal point algorithm for a nonnegative basis pursuit denoising model. Preprint, num. ccsd-00133050 (2007). Available at http://www.math.univ-paris13.fr/~malgouy/

  27. Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29, 341–346 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  28. Moisan, L.: Extrapolation de spectre et variation totale ponderée. In: Proceedings of GRETSI (2001)

  29. Molina, R., Katsaggelos, A., Mateos, J.: Bayesian and regularization methods for hyperparameter estimation in image restoration. IEEE Trans. Image Process. 8, 231–246 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. Moreau, J.J.: Proximité et dualité dans un espace Hilbertien. Bull. Soc. Math. Fr. 93, 273–299 (1965)

    MATH  MathSciNet  Google Scholar 

  31. Mumford, D., Shah, J.J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–684 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  32. Rockafellar, T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  33. Rohatgi, V.K.: An Introduction to Probability Theory and Mathematical Statistics. Wiley, London (1976)

    MATH  Google Scholar 

  34. Rougé, B.: Théorie de l’echantillonage et satellites d’observation de la terre. Analyse de Fourier et traitement d’images, Journées X-UPS (1998)

  35. Rudin, L., Osher, S.: Total variation based image restoration with free local constraints. In: Proc. of the IEEE ICIP-94, Austin, vol. 1, pp. 31–35 (1994)

  36. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  37. Strong, D., Blomgren, P., Chan, T.: Spatially adaptative local feature driven total variation minimizing image restoration. Technical report, CAM Report, UCLA

  38. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Winston, Washington (1977)

    MATH  Google Scholar 

  39. Vese, L.: A study in the BV space of a denoising–deblurring variational problem. Appl. Math. Optim. 44, 131–161 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  40. Vogel, C.R., Oman, M.E.: Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17(1), 227–238 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Almansa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almansa, A., Ballester, C., Caselles, V. et al. A TV Based Restoration Model with Local Constraints. J Sci Comput 34, 209–236 (2008). https://doi.org/10.1007/s10915-007-9160-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-007-9160-x

Keywords

Navigation