Abstract
We propose in this paper a total variation based restoration model which incorporates the image acquisition model z=h * U+n (where z represents the observed sampled image, U is the ideal undistorted image, h denotes the blurring kernel and n is a white Gaussian noise) as a set of local constraints. These constraints, one for each pixel of the image, express the fact that the variance of the noise can be estimated from the residuals z−h * U if we use a neighborhood of each pixel. This is motivated by the fact that the usual inclusion of the image acquisition model as a single constraint expressing a bound for the variance of the noise does not give satisfactory results if we wish to simultaneously recover textured regions and obtain a good denoising of the image. We use Uzawa’s algorithm to minimize the total variation subject to the proposed family of local constraints and we display some experiments using this model.
Similar content being viewed by others
References
Acar, R., Vogel, C.R.: Analysis of total variation penalty methods for ill-posed problems. Inverse Prob. 10, 1217–1229 (1994)
Almansa, A.: Echantillonnage, interpolation et Détéction. Applications en Imagerie Satellitaire. Ph.D. thesis, Ecole Normale Supérieure de Cachan, 94235 Cachan cedex, France, December (2002)
Almansa, A., Caselles, V., Haro, G., Rougé, B.: Restoration and zoom of irregularly sampled, blurred and noisy images by accurate total variation minimization with local constraints. Multiscale Model. Simul. 5(1), 235–272 (2006)
Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Oxford University Press, New York (2000)
Andrews, H.C., Hunt, B.R.: Digital Image Restoration. Prentice Hall, Englewood Cliffs (1977)
Bermúdez, A., Moreno, C.: Duality methods for solving variational inequalities. Comput. Math. Appl. 7(1), 43–58 (1981)
Bertalmío, M., Caselles, V., Rougé, B., Solé, A.: TV based image restoration with local constraints. J. Sci. Comput. 19(1–3), 95–122 (2003)
Blanc-Féraud, L., Charbonnier, P., Aubert, G., Barlaud, M.: Nonlinear image processing: modeling and fast algorithm for regularization with edge detection. In: Proceedings of the International Conference on Image Processing, pp. 474–477 (1995)
Brezis, H.: Operateurs Maximaux Monotones. North-Holland, Amsterdam (1973)
Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)
Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)
Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation based image restoration. SIAM J. Sci. Comput. 20(6), 1964–1977 (1999)
Demoment, G.: Image reconstruction and restoration: overview of common estimation structures and problems. IEEE Trans. Acoust. Speech Signal Proc. 37(12), 2024–2036 (1989)
Donoho, D., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)
Durand, S., Malgouyres, F., Rougé, B.: Image deblurring, spectrum interpolation and application to satellite imaging. Math. Model. Numer. Anal. (1999)
Faurre, P.: Analyse numérique. Notes d’optimisation. École Polytechnique. Ed. Ellipses (1988)
Galatsanos, N.P., Katsaggelos, A.K.: Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation. IEEE Trans. Image Process. 1, 322–336 (1992)
Gasquet, C., Witomski, P.: Analyse de Fourier et applications. Masson, Paris (1990)
Geman, D., Reynolds, G.: Constrained image restoration and recovery of discontinuities. IEEE Trans. Pattern Anal. Mach. Intell. 14, 367–383 (1992)
Gilboa, G., Sochen, N., Zeevi, Y.Y.: Texture preserving variational denoising using an adaptive fidelity term. In: Proceedings VLSM, Nice, France, pp. 137–144 (2003)
Katsaggelos, A.K., Biemond, J., Schafer, R.W., Merserau, R.M.: A regularized iterative image restoration algorithm. IEEE Trans. Image Process. 39, 914–929 (1991)
Koepfler, G., Lopez, C., Morel, J.M.: A multiscale algorithm for image segmentation by variational method. SIAM J. Numer. Anal. 31(1), 282–299 (1994)
Lintner, S., Malgouyres, F.: Solving a variational image restoration model which involves L ∞ constraints. Inverse Prob. 20, 815–831 (2004)
Malgouyres, F.: Minimizing the total variation under a general convex constraint for image restoration. IEEE Trans. Image Process. 11, 1450–1456 (2002)
Malgouyres, F., Guichard, F.: Edge direction preserving image zooming: A mathematical and numerical analysis. SIAM J. Numer. Anal. 39(1), 1–37 (2001)
Malgouyres, F., Zeng, T.: A proximal point algorithm for a nonnegative basis pursuit denoising model. Preprint, num. ccsd-00133050 (2007). Available at http://www.math.univ-paris13.fr/~malgouy/
Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29, 341–346 (1962)
Moisan, L.: Extrapolation de spectre et variation totale ponderée. In: Proceedings of GRETSI (2001)
Molina, R., Katsaggelos, A., Mateos, J.: Bayesian and regularization methods for hyperparameter estimation in image restoration. IEEE Trans. Image Process. 8, 231–246 (1999)
Moreau, J.J.: Proximité et dualité dans un espace Hilbertien. Bull. Soc. Math. Fr. 93, 273–299 (1965)
Mumford, D., Shah, J.J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–684 (1989)
Rockafellar, T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)
Rohatgi, V.K.: An Introduction to Probability Theory and Mathematical Statistics. Wiley, London (1976)
Rougé, B.: Théorie de l’echantillonage et satellites d’observation de la terre. Analyse de Fourier et traitement d’images, Journées X-UPS (1998)
Rudin, L., Osher, S.: Total variation based image restoration with free local constraints. In: Proc. of the IEEE ICIP-94, Austin, vol. 1, pp. 31–35 (1994)
Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)
Strong, D., Blomgren, P., Chan, T.: Spatially adaptative local feature driven total variation minimizing image restoration. Technical report, CAM Report, UCLA
Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Winston, Washington (1977)
Vese, L.: A study in the BV space of a denoising–deblurring variational problem. Appl. Math. Optim. 44, 131–161 (2001)
Vogel, C.R., Oman, M.E.: Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17(1), 227–238 (1996)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Almansa, A., Ballester, C., Caselles, V. et al. A TV Based Restoration Model with Local Constraints. J Sci Comput 34, 209–236 (2008). https://doi.org/10.1007/s10915-007-9160-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-007-9160-x