An a Posteriori Error Estimator for Two-Body Contact Problems on Non-Matching Meshes | Journal of Scientific Computing Skip to main content

Advertisement

Log in

An a Posteriori Error Estimator for Two-Body Contact Problems on Non-Matching Meshes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A posteriori error estimates for two-body contact problems are established. The discretization is based on mortar finite elements with dual Lagrange multipliers. To define locally the error estimator, Arnold–Winther elements for the stress and equilibrated fluxes for the surface traction are used. Using the Lagrange multiplier on the contact zone as Neumann boundary conditions, equilibrated fluxes can be locally computed. In terms of these fluxes, we define on each element a symmetric and globally H(div)-conforming approximation for the stress. Upper and lower bounds for the discretization error in the energy norm are provided. In contrast to many other approaches, the constant in the upper bound is, up to higher order terms, equal to one. Numerical examples illustrate the reliability and efficiency of the estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, J.: A posteriori error estimators for 2nd order elliptic systems II. An optimal order process for calculating self-equilibrated fluxes. Comput. Math. Appl. 26, 75–87 (1993)

    Article  MATH  Google Scholar 

  2. Ainsworth, M., Oden, J.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, Chichester (2000)

    MATH  Google Scholar 

  3. Ainsworth, M., Oden, J., Lee, C.: Local a posteriori error estimators for variational inequalities. Numer. Methods Partial Differ. Equ. (1993)

  4. Arnold, D., Winther, R.: Mixed finite element methods for elasticity. Numer. Math. 92, 401–419 (2002)

    Article  MATH  Google Scholar 

  5. Babuška, I., Strouboulis, T.: The Finite Element Methods and its Reliability. Clarendon Press, Oxford (2001)

    Google Scholar 

  6. Bastian, P., Birken, K., Johannsen, K., Lang, S., Neuss, N., Rentz-Reichert, H., Wieners, C.: UG—a flexible software toolbox for solving partial differential equations. Comput. Vis. Sci. 1, 27–40 (1997)

    Article  MATH  Google Scholar 

  7. Ben Belgacem, F.: Numerical simulation of some variational inequalities arisen from unilateral contact problems by the finite element methods. SIAM J. Numer. Anal. 37, 1198–1216 (2000)

    Article  MATH  Google Scholar 

  8. Ben Belgacem, F., Hild, P., Laborde, P.: Extension of the mortar finite element method to a variational inequality modeling unilateral contact. Math. Models Methods Appl. Sci. 9, 287–303 (1999)

    Article  MATH  Google Scholar 

  9. Ben Belgacem, F., Renard, Y.: Hybrid finite element methods for the Signorini problem. Math. Comput. 72, 1117–1145 (2003)

    Article  MATH  Google Scholar 

  10. Bernardi, C., Hecht, F.: Error indicators for the mortar finite element discretization of the laplace equation. Math. Comput. 71, 1371–1403 (2002)

    Article  MATH  Google Scholar 

  11. Bernardi, C., Maday, Y., Patera, A.: Domain decomposition by the mortar element method. In: Kaper, H., et al. (eds.) Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters, pp. 269–286. Reidel, Dordrecht (1993)

    Google Scholar 

  12. Bernardi, C., Maday, Y., Patera, A.: A new nonconforming approach to domain decomposition: the mortar element method. In: Brezzi, H.B., et al. (eds.) Nonlinear Partial Differential Equations and Their Applications, pp. 13–51. Paris (1994)

  13. Blum, H., Suttmeier, F.: An adaptive finite element discretisation for a simplified Signorini problem. Calcolo 37, 65–77 (2000)

    Article  MATH  Google Scholar 

  14. Bostan, V., Han, W.: A posteriori error analysis for finite element solutions of a frictional contact problem. Comput. Methods Appl. Mech. Eng. 195, 1252–1274 (2006)

    Article  MATH  Google Scholar 

  15. Bostan, V., Han, W., Reddy, B.: A posteriori error estimation and adaptive solution of elliptic variational inequalities of the second kind. Appl. Numer. Math. 52, 13–38 (2005)

    Article  MATH  Google Scholar 

  16. Braess, D.: A posteriori error estimators for obstacle problems—another look. Numer. Math. 101, 523–549 (2005)

    Article  Google Scholar 

  17. Braess, D., Carstensen, C., Hoppe, R.: Convergence analysis of a conforming adaptive finite element method for an obstacle problem (2007, submitted)

  18. Bramble, J.: A second order finite difference analogue of the first biharmonic boundary value problem. Numer. Math. 9, 236–249 (1966)

    Article  MATH  Google Scholar 

  19. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    MATH  Google Scholar 

  20. Brink, U., Stein, E.: A posteriori error estimation in large-strain elasticity using equilibrated local neumann problems. Comput. Methods Appl. Mech. Eng. 161, 77–101 (1998)

    Article  MATH  Google Scholar 

  21. Carstensen, C., Scherf, O., Wriggers, P.: Adaptive finite elements for elastic bodies in contact. SIAM J. Sci. Comput. 20, 1605–1626 (1999)

    Article  MATH  Google Scholar 

  22. Coorevits, P., Hild, P., Hjiaj, M.: A posteriori error control of finite element approximations for Coulomb’s frictional contact. SIAM J. Sci. Comput. 23, 976–999 (2001)

    Article  MATH  Google Scholar 

  23. Coorevits, P., Hild, P., Lhalouani, K., Sassi, T.: Mixed finite element methods for unilateral problems: convergence analysis and numerical studies. Math. Comput. 71, 1–25 (2001)

    Google Scholar 

  24. Coorevits, P., Hild, P., Pelle, J.-P.: A posteriori error estimation for unilateral contact with matching and non-matching meshes. Comput. Methods Appl. Mech. Eng. 186, 65–83 (2000)

    Article  MATH  Google Scholar 

  25. Erdmann, B., Frei, M., Hoppe, R., Kornhuber, R., Wiest, U.: Adaptive finite element methods for variational inequalities. East-West J. Numer. Math. 1, 165–197 (1993)

    MATH  Google Scholar 

  26. Han, W.: A Posteriori Error Analysis via Duality Theory. With Applications in Modeling and Numerical Approximations. Springer, New York (2005)

    MATH  Google Scholar 

  27. Haslinger, J., Hlavác̆ek, I., Nec̆as, J.: Numerical methods for unilateral problems in solid mechanics. In: Ciarlet, P., Lions, J.-L. (eds.) Handbook of Numerical Analysis, vol. 4, pp. 313–485. North-Holland, Amsterdam (1996)

    Google Scholar 

  28. Hild, P.: Numerical implementation of two nonconforming finite element methods for unilateral contact. Comput. Methods Appl. Mech. Eng. 184, 99–123 (2000)

    Article  MATH  Google Scholar 

  29. Hild, P., Laborde, P.: Quadratic finite element methods for unilateral contact problems. Appl. Numer. Math. 41, 410–421 (2002)

    Article  Google Scholar 

  30. Hild, P., Nicaise, S.: A posteriori error estimations of residual type for Signorini’s problem. Numer. Math. 101, 523–549 (2005)

    Article  MATH  Google Scholar 

  31. Hoppe, R., Kornhuber, R.: Adaptive multilevel methods for obstacle problems. SIAM J. Numer. Anal. 31, 301–323 (1994)

    Article  MATH  Google Scholar 

  32. Hüeber, S., Wohlmuth, B.: An optimal a priori error estimate for non-linear multibody contact problems. SIAM J. Numer. Anal. 43, 157–173 (2005)

    Article  Google Scholar 

  33. Hüeber, S., Wohlmuth, B.: A primal-dual active set strategy for non-linear multibody contact problems. Comput. Methods Appl. Mech. Eng. 194, 3147–3166 (2005)

    Article  MATH  Google Scholar 

  34. Johnson, C.: Adaptive finite element methods for the obstacle problem. Math. Models Methods Appl. Sci. 2, 483–487 (1992)

    Article  MATH  Google Scholar 

  35. Kelly, D.: The self-equilibration of residuals and complementary a posteriori error estimates in the finite element method. Int. J. Numer. Methods Eng. 20, 1491–1506 (1984)

    Article  MATH  Google Scholar 

  36. Kelly, D., Isles, J.: Procedures for residual equilibration and local error estimation in the finite element method. Commun. Appl. Numer. Methods 5, 497–505 (1989)

    Article  MATH  Google Scholar 

  37. Kikuchi, N., Oden, J.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM Studies in Applied Mathematics, vol. 8. SIAM, Philadelphia (1988)

    MATH  Google Scholar 

  38. Ladevèze, P., Leguillon, D.: Error estimate procedure in the finite element method and applications. SIAM J. Numer. Anal. 20, 485–509 (1983)

    Article  MATH  Google Scholar 

  39. Ladevèze, P., Maunder, E.: A general method for recovering equilibrating element tractions. Comput. Methods Appl. Mech. Eng. 137, 111–151 (1996)

    Article  MATH  Google Scholar 

  40. Ladevèze, P., Pelle, J.-P., Rougeot, P.: Error estimates and mesh optimization for finite element computation. Eng. Comput. 8, 69–80 (1991)

    Google Scholar 

  41. Lee, C., Oden, J.: A posteriori error estimation of h-p finite element approximations of frictional contact problems. Comput. Methods Appl. Mech. Eng. 113, 11–45 (1994)

    Article  MATH  Google Scholar 

  42. Liu, W., Yan, N.: A posteriori error estimators for a class of variational inequalities. J. Sci. Comput. 15, 361–393 (2000)

    Article  MATH  Google Scholar 

  43. Nicaise, S., Witowski, K., Wohlmuth, B.: An a posteriori error estimator for the Lamé equation based on H(div )-conforming stress approximations. IANS preprint 2006/005, Technical Report, University of Stuttgart (2006)

  44. Nochetto, R., Siebert, K., Veeser, A.: Fully localized a posteriori error estimators and barrier sets for contact problems. SIAM J. Numer. Anal. 42, 2118–2135 (2005)

    Article  MATH  Google Scholar 

  45. Ohnimus, S., Stein, E., Walhorn, E.: Local error estimates of FEM for displacements and stresses in linear elasticity by solving local Neumann problems. Int. J. Numer. Methods Eng. 52, 727–746 (2001)

    Article  MATH  Google Scholar 

  46. Stein, E., Ohnimus, S.: Equilibrium method for postprocessing and error estimation in the finite element method. Comput. Assist. Mech. Eng. Sci. 4, 645–666 (1997)

    MATH  Google Scholar 

  47. Stein, E., Ohnimus, S.: Anisotopic discretization- and model-error estimation in solid mechanics by local Neumann problems. Comput. Methods Appl. Mech. Eng. 176, 363–385 (1999)

    Article  MATH  Google Scholar 

  48. Stein, E., Ohnimus, S., Walhorn, E.: Adaptive finite element discretization in eleasticity and elastoplasticity by global and local error estimators using local Neumann-problems. Z. Angewandte Math. Mech. 79, 147–150 (1999)

    Google Scholar 

  49. Suttmeier, F.: On a direct approach to adaptive fe-discretisations for elliptic variational inequalities. J. Numer. Math. 13, 73–80 (2005)

    Article  MATH  Google Scholar 

  50. Veeser, A.: On a posteriori error estimation for constant obstacle problems. In: Numerical Methods for Viscosity Solutions and Applications. Series on Advances in Mathematics or Applied Sciences, vol. 59, pp. 221–234. World Scientific, Singapore (2001)

    Google Scholar 

  51. Verfürth, R.: A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math. 50, 67–83 (1994)

    Article  MATH  Google Scholar 

  52. Verfürth, R.: A review of a posteriori error estimation and adaptive mesh-refinement techniques. In: Wiley–Teubner Series Advances in Numerical Mathematics. Wiley/Teubner, Chichester/Stuttgart (1996)

    Google Scholar 

  53. Verfürth, R.: A review of a posteriori error estimation techniques for elasticity problems. Comput. Methods Appl. Mech. Eng. 176, 419–440 (1999)

    Article  MATH  Google Scholar 

  54. Wang, Y.: Preconditioning for the mixed formulation of linear plane elasticity. Ph.D. thesis, Texas A&M University (2004)

  55. Widlund, O.: Iterative substructuring methods: Algorithms and theory for elliptic problems in the plane. In: Glowinski, R., Golub, G., Meurant, G., Périaux, J. (eds.) First International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 113–128. SIAM, Philadelphia (1988)

    Google Scholar 

  56. Wohlmuth, B.: A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J. Numer. Anal. 38, 989–1012 (2000)

    Article  MATH  Google Scholar 

  57. Wohlmuth, B.: Discretization Methods and Iterative Solvers Based on Domain Decomposition. Springer, Berlin (2001)

    MATH  Google Scholar 

  58. Wohlmuth, B.: A comparison of dual Lagrange multiplier spaces for mortar finite element discretizations. Math. Model. Numer. Anal. 36, 995–1012 (2002)

    Article  MATH  Google Scholar 

  59. Wriggers, P., Scherf, O.: Different a posteriori error estimators and indicators for contact problems. Math. Comput. Model. 28, 437–447 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara I. Wohlmuth.

Additional information

This work was supported in part by the Deutsche Forschungsgemeinschaft, SFB 404, B8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wohlmuth, B.I. An a Posteriori Error Estimator for Two-Body Contact Problems on Non-Matching Meshes. J Sci Comput 33, 25–45 (2007). https://doi.org/10.1007/s10915-007-9139-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-007-9139-7

Keywords

Navigation