Abstract
A posteriori error estimates for two-body contact problems are established. The discretization is based on mortar finite elements with dual Lagrange multipliers. To define locally the error estimator, Arnold–Winther elements for the stress and equilibrated fluxes for the surface traction are used. Using the Lagrange multiplier on the contact zone as Neumann boundary conditions, equilibrated fluxes can be locally computed. In terms of these fluxes, we define on each element a symmetric and globally H(div)-conforming approximation for the stress. Upper and lower bounds for the discretization error in the energy norm are provided. In contrast to many other approaches, the constant in the upper bound is, up to higher order terms, equal to one. Numerical examples illustrate the reliability and efficiency of the estimator.
Similar content being viewed by others
References
Ainsworth, M., Oden, J.: A posteriori error estimators for 2nd order elliptic systems II. An optimal order process for calculating self-equilibrated fluxes. Comput. Math. Appl. 26, 75–87 (1993)
Ainsworth, M., Oden, J.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, Chichester (2000)
Ainsworth, M., Oden, J., Lee, C.: Local a posteriori error estimators for variational inequalities. Numer. Methods Partial Differ. Equ. (1993)
Arnold, D., Winther, R.: Mixed finite element methods for elasticity. Numer. Math. 92, 401–419 (2002)
Babuška, I., Strouboulis, T.: The Finite Element Methods and its Reliability. Clarendon Press, Oxford (2001)
Bastian, P., Birken, K., Johannsen, K., Lang, S., Neuss, N., Rentz-Reichert, H., Wieners, C.: UG—a flexible software toolbox for solving partial differential equations. Comput. Vis. Sci. 1, 27–40 (1997)
Ben Belgacem, F.: Numerical simulation of some variational inequalities arisen from unilateral contact problems by the finite element methods. SIAM J. Numer. Anal. 37, 1198–1216 (2000)
Ben Belgacem, F., Hild, P., Laborde, P.: Extension of the mortar finite element method to a variational inequality modeling unilateral contact. Math. Models Methods Appl. Sci. 9, 287–303 (1999)
Ben Belgacem, F., Renard, Y.: Hybrid finite element methods for the Signorini problem. Math. Comput. 72, 1117–1145 (2003)
Bernardi, C., Hecht, F.: Error indicators for the mortar finite element discretization of the laplace equation. Math. Comput. 71, 1371–1403 (2002)
Bernardi, C., Maday, Y., Patera, A.: Domain decomposition by the mortar element method. In: Kaper, H., et al. (eds.) Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters, pp. 269–286. Reidel, Dordrecht (1993)
Bernardi, C., Maday, Y., Patera, A.: A new nonconforming approach to domain decomposition: the mortar element method. In: Brezzi, H.B., et al. (eds.) Nonlinear Partial Differential Equations and Their Applications, pp. 13–51. Paris (1994)
Blum, H., Suttmeier, F.: An adaptive finite element discretisation for a simplified Signorini problem. Calcolo 37, 65–77 (2000)
Bostan, V., Han, W.: A posteriori error analysis for finite element solutions of a frictional contact problem. Comput. Methods Appl. Mech. Eng. 195, 1252–1274 (2006)
Bostan, V., Han, W., Reddy, B.: A posteriori error estimation and adaptive solution of elliptic variational inequalities of the second kind. Appl. Numer. Math. 52, 13–38 (2005)
Braess, D.: A posteriori error estimators for obstacle problems—another look. Numer. Math. 101, 523–549 (2005)
Braess, D., Carstensen, C., Hoppe, R.: Convergence analysis of a conforming adaptive finite element method for an obstacle problem (2007, submitted)
Bramble, J.: A second order finite difference analogue of the first biharmonic boundary value problem. Numer. Math. 9, 236–249 (1966)
Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)
Brink, U., Stein, E.: A posteriori error estimation in large-strain elasticity using equilibrated local neumann problems. Comput. Methods Appl. Mech. Eng. 161, 77–101 (1998)
Carstensen, C., Scherf, O., Wriggers, P.: Adaptive finite elements for elastic bodies in contact. SIAM J. Sci. Comput. 20, 1605–1626 (1999)
Coorevits, P., Hild, P., Hjiaj, M.: A posteriori error control of finite element approximations for Coulomb’s frictional contact. SIAM J. Sci. Comput. 23, 976–999 (2001)
Coorevits, P., Hild, P., Lhalouani, K., Sassi, T.: Mixed finite element methods for unilateral problems: convergence analysis and numerical studies. Math. Comput. 71, 1–25 (2001)
Coorevits, P., Hild, P., Pelle, J.-P.: A posteriori error estimation for unilateral contact with matching and non-matching meshes. Comput. Methods Appl. Mech. Eng. 186, 65–83 (2000)
Erdmann, B., Frei, M., Hoppe, R., Kornhuber, R., Wiest, U.: Adaptive finite element methods for variational inequalities. East-West J. Numer. Math. 1, 165–197 (1993)
Han, W.: A Posteriori Error Analysis via Duality Theory. With Applications in Modeling and Numerical Approximations. Springer, New York (2005)
Haslinger, J., Hlavác̆ek, I., Nec̆as, J.: Numerical methods for unilateral problems in solid mechanics. In: Ciarlet, P., Lions, J.-L. (eds.) Handbook of Numerical Analysis, vol. 4, pp. 313–485. North-Holland, Amsterdam (1996)
Hild, P.: Numerical implementation of two nonconforming finite element methods for unilateral contact. Comput. Methods Appl. Mech. Eng. 184, 99–123 (2000)
Hild, P., Laborde, P.: Quadratic finite element methods for unilateral contact problems. Appl. Numer. Math. 41, 410–421 (2002)
Hild, P., Nicaise, S.: A posteriori error estimations of residual type for Signorini’s problem. Numer. Math. 101, 523–549 (2005)
Hoppe, R., Kornhuber, R.: Adaptive multilevel methods for obstacle problems. SIAM J. Numer. Anal. 31, 301–323 (1994)
Hüeber, S., Wohlmuth, B.: An optimal a priori error estimate for non-linear multibody contact problems. SIAM J. Numer. Anal. 43, 157–173 (2005)
Hüeber, S., Wohlmuth, B.: A primal-dual active set strategy for non-linear multibody contact problems. Comput. Methods Appl. Mech. Eng. 194, 3147–3166 (2005)
Johnson, C.: Adaptive finite element methods for the obstacle problem. Math. Models Methods Appl. Sci. 2, 483–487 (1992)
Kelly, D.: The self-equilibration of residuals and complementary a posteriori error estimates in the finite element method. Int. J. Numer. Methods Eng. 20, 1491–1506 (1984)
Kelly, D., Isles, J.: Procedures for residual equilibration and local error estimation in the finite element method. Commun. Appl. Numer. Methods 5, 497–505 (1989)
Kikuchi, N., Oden, J.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM Studies in Applied Mathematics, vol. 8. SIAM, Philadelphia (1988)
Ladevèze, P., Leguillon, D.: Error estimate procedure in the finite element method and applications. SIAM J. Numer. Anal. 20, 485–509 (1983)
Ladevèze, P., Maunder, E.: A general method for recovering equilibrating element tractions. Comput. Methods Appl. Mech. Eng. 137, 111–151 (1996)
Ladevèze, P., Pelle, J.-P., Rougeot, P.: Error estimates and mesh optimization for finite element computation. Eng. Comput. 8, 69–80 (1991)
Lee, C., Oden, J.: A posteriori error estimation of h-p finite element approximations of frictional contact problems. Comput. Methods Appl. Mech. Eng. 113, 11–45 (1994)
Liu, W., Yan, N.: A posteriori error estimators for a class of variational inequalities. J. Sci. Comput. 15, 361–393 (2000)
Nicaise, S., Witowski, K., Wohlmuth, B.: An a posteriori error estimator for the Lamé equation based on H(div )-conforming stress approximations. IANS preprint 2006/005, Technical Report, University of Stuttgart (2006)
Nochetto, R., Siebert, K., Veeser, A.: Fully localized a posteriori error estimators and barrier sets for contact problems. SIAM J. Numer. Anal. 42, 2118–2135 (2005)
Ohnimus, S., Stein, E., Walhorn, E.: Local error estimates of FEM for displacements and stresses in linear elasticity by solving local Neumann problems. Int. J. Numer. Methods Eng. 52, 727–746 (2001)
Stein, E., Ohnimus, S.: Equilibrium method for postprocessing and error estimation in the finite element method. Comput. Assist. Mech. Eng. Sci. 4, 645–666 (1997)
Stein, E., Ohnimus, S.: Anisotopic discretization- and model-error estimation in solid mechanics by local Neumann problems. Comput. Methods Appl. Mech. Eng. 176, 363–385 (1999)
Stein, E., Ohnimus, S., Walhorn, E.: Adaptive finite element discretization in eleasticity and elastoplasticity by global and local error estimators using local Neumann-problems. Z. Angewandte Math. Mech. 79, 147–150 (1999)
Suttmeier, F.: On a direct approach to adaptive fe-discretisations for elliptic variational inequalities. J. Numer. Math. 13, 73–80 (2005)
Veeser, A.: On a posteriori error estimation for constant obstacle problems. In: Numerical Methods for Viscosity Solutions and Applications. Series on Advances in Mathematics or Applied Sciences, vol. 59, pp. 221–234. World Scientific, Singapore (2001)
Verfürth, R.: A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math. 50, 67–83 (1994)
Verfürth, R.: A review of a posteriori error estimation and adaptive mesh-refinement techniques. In: Wiley–Teubner Series Advances in Numerical Mathematics. Wiley/Teubner, Chichester/Stuttgart (1996)
Verfürth, R.: A review of a posteriori error estimation techniques for elasticity problems. Comput. Methods Appl. Mech. Eng. 176, 419–440 (1999)
Wang, Y.: Preconditioning for the mixed formulation of linear plane elasticity. Ph.D. thesis, Texas A&M University (2004)
Widlund, O.: Iterative substructuring methods: Algorithms and theory for elliptic problems in the plane. In: Glowinski, R., Golub, G., Meurant, G., Périaux, J. (eds.) First International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 113–128. SIAM, Philadelphia (1988)
Wohlmuth, B.: A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J. Numer. Anal. 38, 989–1012 (2000)
Wohlmuth, B.: Discretization Methods and Iterative Solvers Based on Domain Decomposition. Springer, Berlin (2001)
Wohlmuth, B.: A comparison of dual Lagrange multiplier spaces for mortar finite element discretizations. Math. Model. Numer. Anal. 36, 995–1012 (2002)
Wriggers, P., Scherf, O.: Different a posteriori error estimators and indicators for contact problems. Math. Comput. Model. 28, 437–447 (1998)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported in part by the Deutsche Forschungsgemeinschaft, SFB 404, B8.
Rights and permissions
About this article
Cite this article
Wohlmuth, B.I. An a Posteriori Error Estimator for Two-Body Contact Problems on Non-Matching Meshes. J Sci Comput 33, 25–45 (2007). https://doi.org/10.1007/s10915-007-9139-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-007-9139-7