Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization | Journal of Global Optimization Skip to main content
Log in

Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper studies mean-risk portfolio optimization models using the conditional value-at-risk (CVaR) as a risk measure. We also employ a cardinality constraint for limiting the number of invested assets. Solving such a cardinality-constrained mean-CVaR model is computationally challenging for two main reasons. First, this model is formulated as a mixed-integer optimization (MIO) problem because of the cardinality constraint, so solving it exactly is very hard when the number of investable assets is large. Second, the problem size depends on the number of asset return scenarios, and the computational efficiency decreases when the number of scenarios is large. To overcome these challenges, we propose a high-performance algorithm named the bilevel cutting-plane algorithm for exactly solving the cardinality-constrained mean-CVaR portfolio optimization problem. We begin by reformulating the problem as a bilevel optimization problem and then develop a cutting-plane algorithm for solving the upper-level problem. To speed up computations for cut generation, we apply to the lower-level problem another cutting-plane algorithm for efficiently minimizing CVaR with a large number of scenarios. Moreover, we prove the convergence properties of our bilevel cutting-plane algorithm. Numerical experiments demonstrate that, compared with other MIO approaches, our algorithm can provide optimal solutions to large problem instances faster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The source code is available at https://github.com/KenKoba2119/cardinality-constrained_cvar_optimization

References

  1. Achterberg, T.: SCIP: solving constraint integer programs. Math. Prog. Comput. 1(1), 1–41 (2009). https://doi.org/10.1007/s12532-008-0001-1

    Article  MathSciNet  MATH  Google Scholar 

  2. Agarwal, A., Negahban, S.N., Wainwright, M.J.: Stochastic optimization and sparse statistical recovery: Optimal algorithms for high dimensions. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, pp. 1538–1546 (2012). https://doi.org/10.1109/ciss.2014.6814157

  3. Ágoston, K.C.: CVaR minimization by the SRA algorithm. Central Eur. J. Oper. Res. 20(4), 623–632 (2012). https://doi.org/10.1007/s10100-011-0194-7

    Article  MathSciNet  MATH  Google Scholar 

  4. Ahmed, S.: Convexity and decomposition of mean-risk stochastic programs. Math. Program. 106(3), 433–446 (2006). https://doi.org/10.1007/s10107-005-0638-8

    Article  MathSciNet  MATH  Google Scholar 

  5. Alexander, S., Coleman, T.F., Li, Y.: Minimizing CVaR and VaR for a portfolio of derivatives. J. Banking Finance 30(2), 583–605 (2006). https://doi.org/10.1016/j.jbankfin.2005.04.012

    Article  Google Scholar 

  6. Angelelli, E., Mansini, R., Speranza, M.G.: A comparison of MAD and CVaR models with real features. J. Banking Finance 32(7), 1188–1197 (2008). https://doi.org/10.1016/j.jbankfin.2006.07.015

    Article  Google Scholar 

  7. Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Finance 9(3), 203–228 (1999). https://doi.org/10.1111/1467-9965.00068

    Article  MathSciNet  MATH  Google Scholar 

  8. Beasley, J.E.: OR-library: distributing test problems by electronic mail. J. Oper. Res. Soc. 41(11), 1069–1072 (1990). https://doi.org/10.1057/jors.1990.166

    Article  Google Scholar 

  9. Beliakov, G., Bagirov, A.: Non-smooth optimization methods for computation of the conditional value-at-risk and portfolio optimization. Optimization 55(5–6), 459–479 (2006). https://doi.org/10.1080/02331930600816353

    Article  MathSciNet  MATH  Google Scholar 

  10. Bertsekas, D., Nedić, A., Ozdaglar, A.: Convex Analysis and Optimization. Athena Scientific, Athena Scientific Optimization and Computation Series (2003)

    MATH  Google Scholar 

  11. Bertsimas, D., Cory-Wright, R.: A scalable algorithm for sparse portfolio selection. arXiv preprint arXiv:1811.00138 (2018)

  12. Bertsimas, D., Cory-Wright, R., Pauphilet, J.: A unified approach to mixed-integer optimization: nonlinear formulations and scalable algorithms. arXiv preprint arXiv:1907.02109 (2019)

  13. Bertsimas, D., Darnell, C., Soucy, R.: Portfolio construction through mixed-integer programming at Grantham, Mayo. Van Otterloo and Company. Interfaces 29(1), 49–66 (1999). https://doi.org/10.1287/inte.29.1.49

    Article  Google Scholar 

  14. Bertsimas, D., Li, M.L.: Fast exact matrix completion: A unified optimization framework for matrix completion. J. Mach. Learn. Res. 21(231), 1–43 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Bertsimas, D., Li, M.L.: Scalable holistic linear regression. Oper. Res. Lett. 48(3), 203–208 (2020). https://doi.org/10.1016/j.orl.2020.02.008

    Article  MathSciNet  MATH  Google Scholar 

  16. Bienstock, D.: Computational study of a family of mixed-integer quadratic programming problems. Math. Program. 74(2), 121–140 (1996). https://doi.org/10.1007/bf02592208

    Article  MathSciNet  MATH  Google Scholar 

  17. Boyd, S., Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004). https://doi.org/10.1017/cbo9780511804441

    Article  Google Scholar 

  18. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011). https://doi.org/10.1561/2200000016

    Article  MATH  Google Scholar 

  19. Branda, M., Bucher, M., Červinka, M., Schwartz, A.: Convergence of a scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization. Comput. Optim. Appl. 70(2), 503–530 (2018). https://doi.org/10.1007/s10589-018-9985-2

    Article  MathSciNet  MATH  Google Scholar 

  20. Chang, T.J., Meade, N., John, E.B., Sharaiha, Y.M.: Heuristics for cardinality constrained portfolio optimisation. Comput. Oper. Res. 27(13), 1271–1302 (2000)

    Article  Google Scholar 

  21. Chen, Z., Peng, S., Lisser, A.: A sparse chance constrained portfolio selection model with multiple constraints. J. Global Optim. 77(4), 825–852 (2020). https://doi.org/10.1007/s10898-020-00901-3

    Article  MathSciNet  MATH  Google Scholar 

  22. Cheng, R., Gao, J.: On cardinality constrained mean-cvar portfolio optimization. In: Proceedings of the 27th Chinese Control and Decision Conference, pp. 1074–1079 (2015). https://doi.org/10.1109/ccdc.2015.7162076

  23. Coey, C., Lubin, M., Vielma, J.P.: Outer approximation with conic certificates for mixed-integer convex problems. Math. Program. Comput. 12(2), 249–293 (2020). https://doi.org/10.1007/s12532-020-00178-3

    Article  MathSciNet  MATH  Google Scholar 

  24. Delage, E., Ye, Y.: Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58(3), 595–612 (2010). https://doi.org/10.1287/opre.1090.0741

    Article  MathSciNet  MATH  Google Scholar 

  25. DeMiguel, V., Garlappi, L., Nogales, F.J., Uppal, R.: A generalized approach to portfolio optimization: improving performance by constraining portfolio norms. Manage. Sci. 55(5), 798–812 (2009). https://doi.org/10.1287/mnsc.1080.0986

    Article  MATH  Google Scholar 

  26. Fábián, C.I.: Handling CVaR objectives and constraints in two-stage stochastic models. Eur. J. Oper. Res. 191(3), 888–911 (2008). https://doi.org/10.1016/j.ejor.2007.02.052

    Article  MathSciNet  MATH  Google Scholar 

  27. Fabozzi, F.J., Huang, D., Zhou, G.: Robust portfolios: contributions from operations research and finance. Ann. Oper. Res. 176(1), 191–220 (2010). https://doi.org/10.1007/s10479-009-0515-6

    Article  MathSciNet  MATH  Google Scholar 

  28. Frangioni, A., Furini, F., Gentile, C.: Approximated perspective relaxations: a project and lift approach. Comput. Optim. Appl. 63(3), 705–735 (2016). https://doi.org/10.1007/s10589-015-9787-8

    Article  MathSciNet  MATH  Google Scholar 

  29. Frangioni, A., Gentile, C.: SDP diagonalizations and perspective cuts for a class of nonseparable MIQP. Oper. Res. Lett. 35(2), 181–185 (2007). https://doi.org/10.1016/j.orl.2006.03.008

    Article  MathSciNet  MATH  Google Scholar 

  30. French, K.R.: Kenneth R. French—data library. https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. Accessed 17 July 2020

  31. Gally, T., Pfetsch, M.E., Ulbrich, S.: A framework for solving mixed-integer semidefinite programs. Optim. Methods Softw. 33(3), 594–632 (2017). https://doi.org/10.1080/10556788.2017.1322081

    Article  MathSciNet  MATH  Google Scholar 

  32. Gotoh, J.Y., Shinozaki, K., Takeda, A.: Robust portfolio techniques for mitigating the fragility of CVaR minimization and generalization to coherent risk measures. Quant. Finance 13(10), 1621–1635 (2013). https://doi.org/10.1080/14697688.2012.738930

    Article  MathSciNet  MATH  Google Scholar 

  33. Gotoh, J.Y., Takeda, A.: On the role of norm constraints in portfolio selection. Comput. Manage. Sci. 8(4), 323–353 (2011). https://doi.org/10.1007/s10287-011-0130-2

    Article  MathSciNet  MATH  Google Scholar 

  34. Günlük, O., Linderoth, J.: Perspective reformulations of mixed integer nonlinear programs with indicator variables. Math. Program. 124(1–2), 183–205 (2010). https://doi.org/10.1007/s10107-010-0360-z

    Article  MathSciNet  MATH  Google Scholar 

  35. Günlük, O., Linderoth, J.: Perspective reformulation and applications. In: Mixed Integer Nonlinear Programming, pp. 61–89. Springer (2011). https://doi.org/10.1007/978-1-4614-1927-3

  36. Han, S., Gómez, A., Atamtürk, A.: 2\(\times \)2 convexifications for convex quadratic optimization with indicator variables. arXiv preprint arXiv:2004.07448 (2020)

  37. Haneveld, W.K., van der Vlerk, M.H.: Integrated chance constraints: Reduced forms and an algorithm. Comput. Manage. Sci. 3(4), 245–269 (2006). https://doi.org/10.1007/s10287-005-0007-3

    Article  MathSciNet  MATH  Google Scholar 

  38. Henrion, R., Römisch, W.: Problem-based optimal scenario generation and reduction in stochastic programming. Math. Program. (2018). https://doi.org/10.1007/s10107-018-1337-6

    Article  Google Scholar 

  39. Iyengar, G., Ma, A.K.C.: Fast gradient descent method for Mean-CVaR optimization. Ann. Oper. Res. 205(1), 203–212 (2013). https://doi.org/10.1007/s10479-012-1245-8

    Article  MathSciNet  MATH  Google Scholar 

  40. Kaggle: S&P 500 stock data. https://www.kaggle.com/camnugent/sandp500. Accessed 23 Dec (2020)

  41. Kaut, M., Vladimirou, H., Wallace, S.W., Zenios, S.A.: Stability analysis of portfolio management with conditional value-at-risk. Quant. Finance 7(4), 397–409 (2007). https://doi.org/10.1080/14697680701483222

    Article  MathSciNet  MATH  Google Scholar 

  42. Kobayashi, K., Takano, Y.: A branch-and-cut algorithm for solving mixed-integer semidefinite optimization problems. Comput. Optim. Appl. 75(2), 493–513 (2020). https://doi.org/10.1007/s10589-019-00153-2

    Article  MathSciNet  MATH  Google Scholar 

  43. Konno, H., Waki, H., Yuuki, A.: Portfolio optimization under lower partial risk measures. Asia Pacific Finan. Mar. 9(2), 127–140 (2002). https://doi.org/10.1023/a:1022238119491

    Article  MATH  Google Scholar 

  44. Künzi-Bay, A., Mayer, J.: Computational aspects of minimizing conditional value-at-risk. Comput. Manage. Sci. 3(1), 3–27 (2006). https://doi.org/10.1007/s10287-005-0042-0

    Article  MathSciNet  MATH  Google Scholar 

  45. Kusuoka, S.: On law invariant coherent risk measures. In: Advances in Mathematical Economics, pp. 83–95. Springer Japan (2001). https://doi.org/10.1007/978-4-431-67891-5_4

  46. Lim, C., Sherali, H.D., Uryasev, S.: Portfolio optimization by minimizing conditional value-at-risk via nondifferentiable optimization. Comput. Optim. Appl. 46(3), 391–415 (2010). https://doi.org/10.1007/s10589-008-9196-3

    Article  MathSciNet  MATH  Google Scholar 

  47. Liu, H., Wang, X., Yao, T., Li, R., Ye, Y.: Sample average approximation with sparsity-inducing penalty for high-dimensional stochastic programming. Math. Program. 178(1–2), 69–108 (2018). https://doi.org/10.1007/s10107-018-1278-0

    Article  MathSciNet  MATH  Google Scholar 

  48. Mansini, R., Ogryczak, W., Speranza, M.G.: Twenty years of linear programming based portfolio optimization. Eur. J. Oper. Res. 234(2), 518–535 (2014). https://doi.org/10.1016/j.ejor.2013.08.035

    Article  MathSciNet  MATH  Google Scholar 

  49. Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952). https://doi.org/10.2307/2975974

    Article  Google Scholar 

  50. Mittelmann H.: Benchmarks for optimization software. http://plato.asu.edu/bench.html. Accessed 6 Jan (2021)

  51. Ogryczak, W., Śliwiński, T.: On solving the dual for portfolio selection by optimizing conditional value at risk. Comput. Optim. Appl. 50(3), 591–595 (2011). https://doi.org/10.1007/s10589-010-9321-y

    Article  MathSciNet  MATH  Google Scholar 

  52. Pereira, M.V.F., Pinto, L.M.V.G.: Multi-stage stochastic optimization applied to energy planning. Math. Program. 52(1–3), 359–375 (1991). https://doi.org/10.1007/BF01582895

    Article  MathSciNet  MATH  Google Scholar 

  53. Perold, A.F.: Large-scale portfolio optimization. Manage. Sci. 30(10), 1143–1160 (1984). https://doi.org/10.1287/MNSC.30.10.1143

    Article  MathSciNet  MATH  Google Scholar 

  54. Pflug, G.C.: Some remarks on the value-at-risk and the conditional value-at-risk. In: Nonconvex Optimization and Its Applications, pp. 272–281. Springer (2000). https://doi.org/10.1007/978-1-4757-3150-7_15

  55. Quesada, I., Grossmann, I.: An LP/NLP based branch and bound algorithm for convex MINLP optimization problems. Comput. Chem. Eng. 16(10–11), 937–947 (1992). https://doi.org/10.1016/0098-1354(92)80028-8

    Article  Google Scholar 

  56. Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2(3), 21–41 (2000). https://doi.org/10.21314/JOR.2000.038

    Article  Google Scholar 

  57. Rockafellar, R.T., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Banking Finance 26(7), 1443–1471 (2002). https://doi.org/10.1016/S0378-4266(02)00271-6

    Article  Google Scholar 

  58. Shapiro, A.: On a time consistency concept in risk averse multistage stochastic programming. Oper. Res. Lett. 37(3), 143–147 (2009). https://doi.org/10.1016/j.orl.2009.02.005

    Article  MathSciNet  MATH  Google Scholar 

  59. Shapiro, A.: On Kusuoka representation of law invariant risk measures. Math. Oper. Res. 38(1), 142–152 (2013). https://doi.org/10.1287/moor.1120.0563

    Article  MathSciNet  MATH  Google Scholar 

  60. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming. Society for Industrial and Applied Mathematics (2009). https://doi.org/10.1137/1.9780898718751

    Article  MATH  Google Scholar 

  61. Takano, Y., Nanjo, K., Sukegawa, N., Mizuno, S.: Cutting plane algorithms for mean-CVaR portfolio optimization with nonconvex transaction costs. Comput. Manage. Sci. 12(2), 319–340 (2014). https://doi.org/10.1007/s10287-014-0209-7

    Article  MathSciNet  MATH  Google Scholar 

  62. Takeda, A., Kanamori, T.: A robust approach based on conditional value-at-risk measure to statistical learning problems. Eur. J. Oper. Res. 198(1), 287–296 (2009). https://doi.org/10.1016/j.ejor.2008.07.027

    Article  MathSciNet  MATH  Google Scholar 

  63. Tamura, R., Kobayashi, K., Takano, Y., Miyashiro, R., Nakata, K., Matsui, T.: Best subset selection for eliminating multicollinearity. J. Oper. Res. Soc. Jpn 60(3), 321–336 (2017). https://doi.org/10.15807/jorsj.60.321

    Article  MathSciNet  MATH  Google Scholar 

  64. Tamura, R., Kobayashi, K., Takano, Y., Miyashiro, R., Nakata, K., Matsui, T.: Mixed integer quadratic optimization formulations for eliminating multicollinearity based on variance inflation factor. J. Global Optim. 73(2), 431–446 (2019). https://doi.org/10.1007/s10898-018-0713-3

    Article  MathSciNet  MATH  Google Scholar 

  65. Tong, X., Qi, L., Wu, F., Zhou, H.: A smoothing method for solving portfolio optimization with CVaR and applications in allocation of generation asset. Appl. Math. Comput. 216(6), 1723–1740 (2010). https://doi.org/10.1016/j.amc.2009.12.031

    Article  MathSciNet  MATH  Google Scholar 

  66. Wright, S.J.: Primal-Dual Interior-Point Methods. SIAM (1997). https://doi.org/10.1137/1.9781611971453

    Article  Google Scholar 

  67. Zhao, C., Guan, Y.: Data-driven risk-averse stochastic optimization with wasserstein metric. Oper. Res. Lett. 46(2), 262–267 (2018). https://doi.org/10.1016/j.orl.2018.01.011

    Article  MathSciNet  MATH  Google Scholar 

  68. Zheng, X., Sun, X., Li, D.: Improving the performance of MIQP solvers for quadratic programs with cardinality and minimum threshold constraints: a semidefinite program approach. INFORMS J. Comput. 26(4), 690–703 (2014). https://doi.org/10.1287/ijoc.2014.0592

    Article  MathSciNet  MATH  Google Scholar 

  69. Zou, J., Ahmed, S., Sun, X.A.: Stochastic dual dynamic integer programming. Math. Program. 175(1–2), 461–502 (2018). https://doi.org/10.1007/s10107-018-1249-5

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Kobayashi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Theorem 1

Problem (10) is formulated as follows:

$$\begin{aligned} f({\varvec{z}})=\mathop {\hbox {minimize}}\limits _{a,{\varvec{q}},v,{\varvec{x}}}&\quad \frac{1}{2\gamma }{\varvec{x}}^\top {\varvec{x}} + a + v \end{aligned}$$
(35a)
$$\begin{aligned} {{\,\mathrm{subject~to}\,}}&\quad v\ge \frac{1}{1-\beta }\sum _{s \in {\mathcal {S}}}p_s q_s, \end{aligned}$$
(35b)
$$\begin{aligned}&\quad q_s \ge -({\varvec{r}}^{(s)})^\top {\varvec{Z}}{\varvec{x}} - a \quad (\forall s\in {\mathcal {S}}), \end{aligned}$$
(35c)
$$\begin{aligned}&\quad {\varvec{A}} {\varvec{Z}} {\varvec{x}} \le {\varvec{b}}, \end{aligned}$$
(35d)
$$\begin{aligned}&\quad {\varvec{1}}^\top {\varvec{Z}} {\varvec{x}} = 1, \end{aligned}$$
(35e)
$$\begin{aligned}&\quad {\varvec{Z}} {\varvec{x}} \ge {\varvec{0}}, \end{aligned}$$
(35f)
$$\begin{aligned}&\quad {\varvec{q}}\ge {\varvec{0}}. \end{aligned}$$
(35g)

The Lagrange function of Problem (35) is expressed as

$$\begin{aligned} \begin{aligned} {\mathcal {L}}(a,{\varvec{q}},v,{\varvec{x}}, \eta ,{\varvec{\alpha }}, {\varvec{\zeta }}, \lambda ,{\varvec{\pi }},{\varvec{\theta }})&:= \frac{1}{2\gamma }{\varvec{x}}^\top {\varvec{x}} + a + v - \eta \left( v-\frac{1}{1-\beta }\sum _{s \in {\mathcal {S}}}p_sq_s\right) \\&\qquad -\sum _{ s\in {\mathcal {S}}}\alpha _{s}\left( q_s +({\varvec{r}}^{(s)})^\top {\varvec{Z}} {\varvec{x}} +a\right) \\&\qquad -{\varvec{\zeta }}^\top \left( {\varvec{b}} - {\varvec{A}}{\varvec{Z}}{\varvec{x}}\right) - \lambda \left( {\varvec{1}}^\top {\varvec{Z}}{\varvec{x}}-1\right) -{\varvec{\pi }}^\top {\varvec{Z}}{\varvec{x}}- {\varvec{\theta }}^\top {\varvec{q}}, \end{aligned} \end{aligned}$$

where \(\eta \ge 0,~{\varvec{\alpha }} := (\alpha _{s})_{s\in {\mathcal {S}}} \ge {\varvec{0}},~{\varvec{\zeta }} \ge {\varvec{0}},~\lambda \in {\mathbb {R}},~{\varvec{\pi }} \ge {\varvec{0}},~\mathrm {and}~{\varvec{\theta }} \ge {\varvec{0}}\) are Lagrange multipliers. Then, the Lagrange dual problem of Problem (35) is posed as:

$$\begin{aligned} \max _{\begin{array}{c} \eta \ge 0,~{\varvec{\alpha }}\ge {\varvec{0}},~{\varvec{\zeta }}\ge {\varvec{0}},\\ \lambda \in {\mathbb {R}},~{\varvec{\pi }} \ge {\varvec{0}},~{\varvec{\theta }} \ge {\varvec{0}} \end{array}}~\min _{\begin{array}{c} a\in {\mathbb {R}},~{\varvec{q}} \in {\mathbb {R}}^S,\\ v\in {\mathbb {R}},~{\varvec{x}}\in {\mathbb {R}}^N \end{array}}~{\mathcal {L}}(a,{\varvec{q}},v,{\varvec{x}}, \eta ,{\varvec{\alpha }}, {\varvec{\zeta }}, \lambda ,{\varvec{\pi }},{\varvec{\theta }}). \end{aligned}$$
(36)

Recall that Problem (35) is feasible. Also, the objective function is proper convex, and all the constraints are linear in Problem (35). Then, the strong duality holds; see, for example, Section 5.2.3 in Boyd and Vandenberghe [17]. As a result, \(f({\varvec{z}})\) is equal to the optimal objective value of Problem (36). Now, let us focus on the inner minimization problem:

$$\begin{aligned} \min _{\begin{array}{c} a\in {\mathbb {R}},~{\varvec{q}} \in {\mathbb {R}}^S,\\ v\in {\mathbb {R}},~{\varvec{x}}\in {\mathbb {R}}^N \end{array}}~{\mathcal {L}}(a,{\varvec{q}},v,{\varvec{x}}, \eta ,{\varvec{\alpha }}, {\varvec{\zeta }}, \lambda ,{\varvec{\pi }},{\varvec{\theta }}). \end{aligned}$$
(37)

Note that Problem (37) is an unconstrained convex quadratic optimization problem and its objective function is linear in \((a, {\varvec{q}}, v)\). Because Problem (37) must be bounded, the Lagrange multipliers are required to satisfy the following conditions:

$$\begin{aligned} \nabla _{a}{\mathcal {L}}&= 1 - \sum _{s\in {\mathcal {S}}}\alpha _s = 0, \end{aligned}$$
(38)
$$\begin{aligned} \nabla _{{\varvec{q}}}{\mathcal {L}}&= \frac{\eta }{1-\beta }{\varvec{p}} - {\varvec{\alpha }}-{\varvec{\theta }} = 0, \end{aligned}$$
(39)
$$\begin{aligned} \nabla _{v}{\mathcal {L}}&=1 -\eta = 0. \end{aligned}$$
(40)

Also, the following optimality condition should be satisfied:

$$\begin{aligned} \nabla _{{\varvec{x}}}{\mathcal {L}}&= \frac{1}{\gamma } {\varvec{x}} - {\varvec{Z}} \left( \sum _{s\in {\mathcal {S}}}\alpha _{s}{\varvec{r}}^{(s)} - {\varvec{A}}^{\top } {\varvec{\zeta }} + \lambda {\varvec{1}} + {\varvec{\pi }} \right) = {\varvec{0}}. \end{aligned}$$
(41)

According to Eqs. (38), (39), (40), and (41), the optimal objective value of Problem (37) is calculated as

$$\begin{aligned} -\frac{\gamma }{2} {\varvec{\omega }}^\top {\varvec{Z}}^2 {\varvec{\omega }} - {\varvec{b}}^\top {\varvec{\zeta }} + \lambda , \end{aligned}$$

where \({\varvec{\omega }}\in {\mathbb {R}}^N\) is a vector of auxiliary decision variables satisfying

$$\begin{aligned} {\varvec{\omega }} = \sum _{s\in {\mathcal {S}}}\alpha _{s}{\varvec{r}}^{(s)} - {\varvec{A}}^\top {\varvec{\zeta }} + \lambda {\varvec{1}} + {\varvec{\pi }}. \end{aligned}$$

Because \({\varvec{z}} \in \{0,1\}^N\), it holds that \({\varvec{\omega }}^\top {\varvec{Z}}^2{\varvec{\omega }} = {\varvec{z}}^\top ({\varvec{\omega }}\circ {\varvec{\omega }})\). Therefore, the Lagrange dual problem (36) is formulated as follows:

$$\begin{aligned} f({\varvec{z}})=&\mathop {\hbox {maximize}}\limits _{{\varvec{\alpha }}, {\varvec{\zeta }}, \lambda , {\varvec{\omega }}} \quad -\frac{\gamma }{2} {\varvec{z}}^\top ({\varvec{\omega }}\circ {\varvec{\omega }}) - {\varvec{b}}^\top {\varvec{\zeta }} + \lambda \\&\!\!\!\quad {{\,\mathrm{subject~to}\,}}\quad {\varvec{\omega }} \ge \sum _{s\in {\mathcal {S}}}\alpha _{s}{\varvec{r}}^{(s)} - {\varvec{A}}^\top {\varvec{\zeta }} + \lambda {\varvec{1}}, \\&\quad \quad \quad \quad \quad \quad \quad \quad \sum _{s\in {\mathcal {S}}}\alpha _s = 1, \\&\quad \quad \quad \quad \qquad \quad \quad \alpha _s \le \frac{p_s}{1-\beta } \quad (\forall s\in {\mathcal {S}}), \\&\quad \quad \quad \quad \qquad \quad \quad {\varvec{\alpha }} \ge {\varvec{0}},~{\varvec{\zeta }}\ge {\varvec{0}}, \end{aligned}$$

where we substitute \(\eta =1\), and eliminate the nonnegative variables \({\varvec{\pi }}\) and \({\varvec{\theta }}\). \(\square \)

Table 6 Numerical results for the four datasets (port1, ind49, sbm100, and port5) with \((S,\gamma )=(10^5,10/\sqrt{N})\) for \(k\in \{5,10,15\}\)
Fig. 3
figure 3

Results for port1 with \((S,k)=(10^5,10)\) for \(\gamma \in \{10^{0.2i}/\sqrt{N}\mid i=0,1,\dots ,20\}\)

Fig. 4
figure 4

Results for ind49 with \((S,k)=(10^5,10)\) for \(\gamma \in \{10^{0.2i}/\sqrt{N}\mid i=0,1,\dots ,20\}\)

Fig. 5
figure 5

Results for sbm100 with \((S,k)=(10^5,10)\) for \(\gamma \in \{10^{0.2i}/\sqrt{N}\mid i=0,1,\dots ,20\}\)

Fig. 6
figure 6

Results for port5 with \((S,k)=(10^5,10)\) for \(\gamma \in \{10^{0.2i}/\sqrt{N}\mid i=0,1,\dots ,20\}\)

Appendix B: Proof of Theorem 2

Problem (26) is formulated as follows:

$$\begin{aligned} f_{{\mathcal {K}}}({\varvec{z}})=\mathop {\hbox {minimize}}\limits _{a, v,{\varvec{x}}}&\quad \frac{1}{2\gamma }{\varvec{x}}^\top {\varvec{x}} + a + v \end{aligned}$$
(42a)
$$\begin{aligned} {{\,\mathrm{subject~to}\,}}&\quad v \ge \frac{1}{1-\beta }\sum _{s \in {\mathcal {J}}}p_s( -({\varvec{r}}^{(s)})^\top {\varvec{Z}}{\varvec{x}} - a) \quad (\forall {\mathcal {J}} \in {\mathcal {K}}), \end{aligned}$$
(42b)
$$\begin{aligned}&\quad v\ge 0, \end{aligned}$$
(42c)
$$\begin{aligned}&\quad {\varvec{A}} {\varvec{Z}} {\varvec{x}} \le {\varvec{b}}, \end{aligned}$$
(42d)
$$\begin{aligned}&\quad {\varvec{1}}^\top {\varvec{Z}} {\varvec{x}} = 1, \end{aligned}$$
(42e)
$$\begin{aligned}&\quad {\varvec{Z}} {\varvec{x}} \ge {\varvec{0}}. \end{aligned}$$
(42f)

The Lagrange function of Problem (42) is expressed as

$$\begin{aligned} \begin{aligned} {\mathcal {L}}(a, v, {\varvec{x}}, {\varvec{\alpha }},\xi ,{\varvec{\zeta }},\lambda ,{\varvec{\pi }})&:= \frac{1}{2\gamma }{\varvec{x}}^\top {\varvec{x}} + a + v-\sum _{ {\mathcal {J}}\in {\mathcal {K}}}\alpha _{{\mathcal {J}}}\left( v + \frac{1}{1-\beta }\sum _{s\in {\mathcal {J}}}p_s\left( ({\varvec{r}}^{(s)})^\top {\varvec{Z}} {\varvec{x}} +a\right) \right) \\&\qquad -\xi v-{\varvec{\zeta }}^\top \left( {\varvec{b}} - {\varvec{A}}{\varvec{Z}}{\varvec{x}}\right) - \lambda \left( {\varvec{1}}^\top {\varvec{Z}}{\varvec{x}}-1\right) -{\varvec{\pi }}^\top {\varvec{Z}}{\varvec{x}}, \end{aligned} \end{aligned}$$

where \({\varvec{\alpha }} := (\alpha _{{\mathcal {J}}})_{{\mathcal {J}}\in {\mathcal {K}}} \ge {\varvec{0}},~\xi \ge 0,~ {\varvec{\zeta }}\ge {\varvec{0}},~\lambda \in {\mathbb {R}},~\mathrm {and}~{\varvec{\pi }} \ge {\varvec{0}}\) are Lagrange multipliers. Recall that Problem (42) is feasible. Then, the strong duality holds as well as the proof of Theorem 1, and \(f_{{\mathcal {K}}}({\varvec{z}})\) is equal to the optimal objective value of the following Lagrange dual problem:

$$\begin{aligned} \max _{\begin{array}{c} {\varvec{\alpha }}\ge {\varvec{0}},~\xi \ge 0,~{\varvec{\zeta }}\ge {\varvec{0}},\\ \lambda \in {\mathbb {R}},~{\varvec{\pi }} \ge {\varvec{0}} \end{array}}~\min _{a\in {\mathbb {R}},~v\in {\mathbb {R}},~{\varvec{x}}\in {\mathbb {R}}^N} \quad {\mathcal {L}}(a, v, {\varvec{x}}, {\varvec{\alpha }}, \xi ,{\varvec{\zeta }},\lambda ,{\varvec{\pi }}). \end{aligned}$$
(43)

Now, let us consider the inner minimization problem:

$$\begin{aligned} \min _{a\in {\mathbb {R}},~v\in {\mathbb {R}},~{\varvec{x}}\in {\mathbb {R}}^N} \quad {\mathcal {L}}(a, v, {\varvec{x}}, {\varvec{\alpha }}, \xi ,{\varvec{\zeta }},\lambda ,{\varvec{\pi }}). \end{aligned}$$
(44)

Similarly to the proof of Theorem 1, the following conditions must be satisfied:

$$\begin{aligned}&\nabla _{a}{\mathcal {L}} = 1 - \frac{1}{1-\beta }\sum _{{\mathcal {J}}\in {\mathcal {K}}}\alpha _{{\mathcal {J}}} \sum _{s\in {\mathcal {J}}} p_s = 0, \end{aligned}$$
(45)
$$\begin{aligned}&\nabla _{v}{\mathcal {L}} =1 -\sum _{{\mathcal {J}}\in {\mathcal {K}}}\alpha _{{\mathcal {J}}}-\xi = 0, \end{aligned}$$
(46)
$$\begin{aligned}&\nabla _{{\varvec{x}}}{\mathcal {L}}= \frac{1}{\gamma } {\varvec{x}} - {\varvec{Z}} \left( \frac{1}{1-\beta }\sum _{{\mathcal {J}}\in {\mathcal {K}}}\alpha _{{\mathcal {J}}} \sum _{s\in {\mathcal {J}}} p_s {\varvec{r}}^{(s)} - {\varvec{A}}^\top {\varvec{\zeta }} + \lambda {\varvec{1}} + {\varvec{\pi }} \right) = {\varvec{0}}. \end{aligned}$$
(47)

According to Eqs. (45), (46), and (47), the optimal objective value of Problem (44) is calculated as

$$\begin{aligned} -\frac{\gamma }{2} {\varvec{\omega }}^\top {\varvec{Z}}^2 {\varvec{\omega }} - {\varvec{b}}^\top {\varvec{\zeta }} + \lambda , \end{aligned}$$

where \({\varvec{\omega }}\in {\mathbb {R}}^N\) is a vector of auxiliary decision variables satisfying

$$\begin{aligned} {\varvec{\omega }} = \frac{1}{1-\beta }\sum _{{\mathcal {J}}\in {\mathcal {K}}}\alpha _{{\mathcal {J}}} \sum _{s\in {\mathcal {J}}} p_s {\varvec{r}}^{(s)} - {\varvec{A}}^\top {\varvec{\zeta }}+ \lambda {\varvec{1}} + {\varvec{\pi }}. \end{aligned}$$

Because \({\varvec{z}} \in \{0,1\}^N\), it holds that \({\varvec{\omega }}^\top {\varvec{Z}}^2{\varvec{\omega }} = {\varvec{z}}^\top ({\varvec{\omega }}\circ {\varvec{\omega }})\). Therefore, the Lagrange dual problem (43) is formulated as follows:

$$\begin{aligned} f_{{\mathcal {K}}}({\varvec{z}})=\mathop {\hbox {maximize}}\limits _{{\varvec{\alpha }}, {\varvec{\zeta }}, \lambda , {\varvec{\omega }}}&\quad -\frac{\gamma }{2} {\varvec{z}}^\top ({\varvec{\omega }}\circ {\varvec{\omega }}) - {\varvec{b}}^\top {\varvec{\zeta }} + \lambda \\ {{\,\mathrm{subject~to}\,}}&\quad {\varvec{\omega }} \ge \frac{1}{1-\beta }\sum _{{\mathcal {J}} \in {\mathcal {K}}} \alpha _{{\mathcal {J}}} \sum _{s\in {\mathcal {J}}}p_s {\varvec{r}}^{(s)} -{\varvec{A}}^\top {\varvec{\zeta }} +\lambda {\varvec{1}}, \\&\quad \sum _{{\mathcal {J}}\in {\mathcal {K}}}\alpha _{{\mathcal {J}}} \le 1, \\&\quad \sum _{{\mathcal {J}}\in {\mathcal {K}}}\alpha _{{\mathcal {J}}} \sum _{s\in {\mathcal {J}}}p_s = 1-\beta , \\&\quad {\varvec{\alpha }} \ge {\varvec{0}},~{\varvec{\zeta }}\ge {\varvec{0}}, \end{aligned}$$

where we eliminate the nonnegative variables \(\xi \) and \({\varvec{\pi }}\). \(\square \)

Fig. 7
figure 7

Objective value (34) for the three datasets (port1, ind49, and sbm100) with \((S,k)=(10^5,10)\) for \(\gamma \in \{10^{0.2i}/\sqrt{N}\mid i=0,1,\dots ,20\}\)

Appendix C: Detailed experimental results of sensitivity analysis

Table 6 gives the numerical results for the four datasets (ind49, sbm100, port1, and port5) with the cardinality parameter \(k \in \{5, 10, 15\}\). Here, we set \(\gamma =10/\sqrt{N}\) for the \(\ell _2\)-regularization term and \(S=10^5\) as the number of scenarios. Table 6 shows that BCP and BCPc were almost always faster than the other methods when \(k\in \{10, 15\}\). Also, BCP and BCPc tended to be faster with larger k. In the case of the port5 dataset, for example, BCP solved the problem with \(k=15\) in 73.7 s, whereas it failed to complete the computation within 3600 s with \(k=5\).

Figures 3, 4, 5, and 6 show the numerical results for the four datasets (ind49, sbm100, port1, and port5) with the regularization parameter \(\gamma \in \{10^{0.2i}/\sqrt{N}\mid i=0,1,\dots ,20\}\). Here, we set \(k=10\) for the cardinality constraint and \(S=10^5\) as the number of scenarios. We can see from Figs. 3, 4, 5, and 6 that the performances of BCP and BCPc were not greatly affected by \(\gamma \), and they were generally faster than the other methods when they completed the computations within 3600 s. In addition, BCP and BCPc tended to be faster with smaller \(\gamma \) for each dataset.

Figure 7 shows “Reg\(+\)CVaR” and “CVaR” defined in Eq. (34) for the three datasets (ind49, sbm100, and port1) with the regularization parameter \(\gamma \in \{10^{0.2i}/\sqrt{N}\mid i=0,1,\dots ,20\}\). For each dataset, the objective value (i.e., “Reg\(+\)CVaR”) was close to CVaR when \(\gamma \ge 10^2/\sqrt{N}\), and CVaR almost converged to its minimum value when \(\gamma \ge 10/\sqrt{N}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, K., Takano, Y. & Nakata, K. Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization. J Glob Optim 81, 493–528 (2021). https://doi.org/10.1007/s10898-021-01048-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-021-01048-5

Keywords

Navigation