Abstract
3D protein structures and nanostructures can be obtained by exploiting distance information provided by experimental techniques, such as nuclear magnetic resonance and the pair distribution function method. These are examples of instances of the unassigned distance geometry problem (uDGP), where the aim is to calculate the position of some points using a list of associated distance values not previoulsy assigned to the pair of points. We propose new mathematical programming formulations and a new heuristic to solve the uDGP related to molecular structure calculations. In addition to theoretical results, computational experiments are also provided.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Alves, R., Lavor, C.: Geometric algebra to model uncertainties in the discretizable molecular distance geometry problem. Adv. Appl. Clifford Algebr. 27, 439–452 (2017)
Alves, R., Lavor, C., Souza, C., Souza, M.: Clifford algebra and discretizable distance geometry. Math. Methods Appl. Sci. 41, 3999–4346 (2018)
Baez-Sanchez, A., Lavor, C.: On the estimation of unknown distances for a class of Euclidean distance matrix completion problems with interval data. Linear Algebr. Appl. 592, 287–305 (2020)
Bartmeyer, P., Lyra, C.: A new quadratic relaxation for binary variables applied to the distance geometry problem. Struct. Multidiscip. Optim. 62, 2197–2201 (2020)
Bendsoe, M., Sigmund, O.: Topol. Optim. Theory. Methods and Applications, Springer, New York (2003)
Billinge, S., Duxbury, P., Gonçalves, D., Lavor, C., Mucherino, A.: Assigned and unassigned distance geometry: applications to biological molecules and nanostructures, 4OR, 14:337-376 (2016)
Billinge, S., Duxbury, P., Gonçalves, D., Lavor, C., Mucherino, A.: Recent results on assigned and unassigned distance geometry with applications to proteinmolecules and nanostructures. Ann. Oper. Res. 271, 161–203 (2018)
Cassioli, A., Gunluk, O., Lavor, C., Liberti, L.: Discretization vertex orders in distance geometry. Discret. Appl. Math. 197, 27–41 (2015)
Costa, T., Bouwmeester, H., Lodwick, W., Lavor, C.: Calculating the possible conformations arising from uncertainty in the molecular distance geometry problem using constraint interval analysis. Inform. Sci. 415–416, 41–52 (2017)
Dambrosio, C., Ky, V., Lavor, C., Liberti, L., Maculan, N.: New error measures and methods for realizing protein graphs from distance data. Discret. Comput. Geom. 57, 371–418 (2017)
Duxbury, P., Granlund, L., Gujarathi, S., Juhas, P., Billinge, S.: The unassigned distance geometry problem. Discret. Appl. Math. 204, 117–132 (2016)
Fontoura, L., Martinelli, R., Poggi, M., Vidal, T.: The minimum distance superset problem: formulations and algorithms. J. Glob. Optim. 72, 27–53 (2018)
Gonçalves, D., Mucherino, A., Lavor, C., Liberti, L.: Recent advances on the interval distance geometry problem. J. Glob. Optim. 69, 525–545 (2017)
Gujarathi, S., Farrow, C., Glosser, C., Granlund, L., Duxbury, P.: Ab-initio reconstruction of complex Euclidean networks in two dimensions. Phys. Rev. E 89, 053311 (2014)
Juhás, P., Cherba, D., Duxbury, P., Punch, W., Billinge, S.: Ab initio determination of solid-state nanostructure. Nature 440, 655–658 (2006)
Lavor, C.: On generating instances for the molecular distance geometry problem. In: Liberti, L., Maculan, N. (eds.) Global Optimization: From Theory to Implementation, pp. 405–414. Springer, Berlin (2006)
Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: Recent advances on the discretizable molecular distance geometry problem. Eur. J. Oper. Res. 219, 698–706 (2012)
Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: The discretizable molecular distance geometry problem. Comput. Optim. Appl. 52, 115–146 (2012)
Lavor, C., Liberti, L., Mucherino, A.: The interval BP algorithm for the discretizable molecular distance geometry problem with interval data. J. Glob. Optim. 56, 855–871 (2013)
Lavor, C., Alves, R., Figueiredo, W., Petraglia, A., Maculan, N.: Clifford algebra and the discretizable molecular distance geometry problem. Adv. Appl. Clifford Algebr. 25, 925–942 (2015)
Lavor, C., Liberti, L., Lodwick, W., Mendonça da Costa, T.: An Introduction to Distance Geometry applied to Molecular Geometry. SpringerBriefs, New York (2017)
Lavor, C., Xambó-Descamps, S., Zaplana, I.: A Geometric Algebra Invitation to Space-Time Physics. Robotics and Molecular Geometry. SpringerBriefs, New York (2018)
Lavor, C., Liberti, L., Donald, B., Worley, B., Bardiaux, B., Malliavin, T., Nilges, M.: Minimal NMR distance information for rigidity of protein graphs. Discret. Appl. Math. 256, 91–104 (2019)
Lavor, C., Alves, R.: Oriented conformal geometric algebra and the molecular distance geometry problem. Adv. Appl. Clifford Algebr. 29, 1–19 (2019)
Lavor, C., Souza, M., Mariano, L., Liberti, L.: On the polinomiality of finding \(^{K}\)DMDGP re-orders. Discret. Appl. Math. 267, 190–194 (2019)
Lavor, C., Souza, M., Mariano, L., Gonçalves, D., Mucherino, A.: Improving the sampling process in the interval Branch-and-Prune algorithm for the discretizable molecular distance geometry problem. Appl. Math. Comput. 389, 125586 (2021)
Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molecular distance geometry problem. Int. Trans. Oper. Res. 15, 1–17 (2008)
Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Rev. 56, 3–69 (2014)
Liberti, L., Lavor, C.: Six mathematical gems from the history of distance geometry. Int. Trans. Oper. Res. 23, 897–920 (2016)
Liberti, L., Lavor, C.: Euclidean Distance Geometry: An Introduction. Springer, New York (2017)
Liberti, L., Lavor, L.: Open research areas in distance geometry. In: Pardalos, P., Migdalas, A. (eds.) Open Problems in Optimization and Data Analysis, pp. 183–223. Springer, New York (2018)
Maioli, D., Lavor, C., Gonçalves, D.: A note on computing the intersection of spheres in \({\mathbb{R}}^{n}\). ANZIAM J. 59, 271–279 (2017)
Malliavin, T., Mucherino, A., Lavor, C., Liberti, L.: Systematic exploration of protein conformational space using a distance geometry approach. J. Chem. Inform. Model. 59, 4486–4503 (2019)
Martínez, J.M.: A note on the theoretical convergence properties of the SIMP method. Struct. Multidiscipl. Optim. 29, 319–323 (2005)
Menger, K.: Untersuchungen uber allgemeine Metrik. Mathematische Annalen 100, 75–163 (1928)
Moreira, N., Duarte, L., Lavor, C., Torezzan, C.: A novel low-rank matrix completion approach to estimate missing entries in Euclidean distance matrix. Comput. Appl. Math. 37, 4989–4999 (2018)
Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.): Distance Geometry: Theory, Methods, and Applications. Springer, New York (2013)
Neto, L.S., Lavor, C., Lodwick, W.: A constrained interval approach to the generalized distance geometry problem. Optim. Lett. 14, 483–492 (2020)
Santiago, C., Lavor, C., Monteiro, S., Kroner-Martins, A.: A new algorithm for the small-field astrometric point-pattern matching problem. J. Glob. Optim. 72, 55–70 (2018)
Saxe, J.: Embeddability of weighted graphs in k-space is strongly np-hard, Proceeding of the 17th Allerton Conference in Communications, Control and Computing, 480–489 (1979)
Skiena, S., Smith, W., Lemke, P.: Reconstructing sets from interpoint distances, Proceedings of the Sixth ACM Symposium on Computational Geometry, 332–339 (1990)
Worley, B., Delhommel, F., Cordier, F., Malliavin, T., Bardiaux, B., Wolff, N., Nilges, M., Lavor, C., Liberti, L.: Tuning interval branch-and-prune for protein structure determination. J. Glob. Optim. 72, 109–127 (2018)
Acknowledgements
We would like to thank the Brazilian research agencies CNPq and FAPESP, for their financial support, and the reviewers for their valuable comments.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Fapesp and CNPq-Brazil.
Rights and permissions
About this article
Cite this article
Duxbury, P., Lavor, C., Liberti, L. et al. Unassigned distance geometry and molecular conformation problems. J Glob Optim 83, 73–82 (2022). https://doi.org/10.1007/s10898-021-01023-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-021-01023-0