Abstract
In this paper, we investigate the convergence of the proximal iteratively reweighted algorithm for a class of nonconvex and nonsmooth problems. Such problems actually include numerous models in the area of signal processing and machine learning research. Two extensions of the algorithm are also studied. We provide a unified scheme for these three algorithms. With the Kurdyka–Łojasiewicz property, we prove that the unified algorithm globally converges to a critical point of the objective function.
Similar content being viewed by others
References
Chen, X., Ge, D., Wang, Z., et al.: Complexity of unconstrained \(L_2\)-\(L_p\) minimization. Math. Program. 143(1–2), 371–383 (2014)
Lai, M.J., Xu, Y., Yin, W.: Improved iteratively reweighted least squares for unconstrained smoothed \(\ell _q\) minimization. SIAM J. Numer. Anal. 51(2), 927–957 (2013)
Lu, C., Wei, Y., Lin, Z., Yan, S.: Proximal iteratively reweighted algorithm with multiple splitting for nonconvex sparsity optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence (2014)
Ochs, P., Dosovitskiy, A., Brox, T., et al.: On iteratively reweighted algorithms for nonsmooth nonconvex optimization in computer vision. SIAM J. Imaging Sci. 8(1), 331–372 (2015)
Ochs, P., Chen, Y., Brox, T., et al.: iPiano: inertial proximal algorithm for nonconvex optimization. SIAM J. Imaging Sci. 7(2), 1388–1419 (2014)
Horst, R., Thoai, N.V.: DC programming: overview. J. Optim. Theory Appl. 103(1), 1–43 (1999)
Tao, P.D., Le Thi Hoai, A.: A DC optimization algorithm for solving the trust-region subproblem. SIAM J. Optim. 8(2), 476–505 (1998)
Tao, P.D., Le Thi Hoai, A.: Solving a class of linearly constrained indefinite quadratic problems by DC algorithms. J. Glob. Optim. 11(3), 253–285 (1997)
Chen, X., Ng, M.K., Zhang, C.: Non-Lipschitz-regularization and box constrained model for image restoration. IEEE Trans. Image Process. 21(12), 4709–4721 (2012)
Chen, X., Zhou, W.: Convergence of the reweighted \(\ell _1\) minimization algorithm for \(\ell _2\)-\(\ell _p\) minimization. Comput. Optim. Appl. 59(1–2), 47–61 (2014)
Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: IEEE International Conference on Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE (2008)
Gasso, G., Rakotomamonjy, A., Canu, S.: Recovering sparse signals with a certain family of nonconvex penalties and DC programming. IEEE Trans. Signal Process. 57(12), 4686–4698 (2009)
Weston, J., Elisseeff, A., Schölkopf, B., et al.: The use of zero-norm with linear models and kernel methods. J. Mach. Learn. Res. 3, 1439–1461 (2003)
Zhang, T.: Multi-stage convex relaxation for learning with sparse regularization. In: Proceedings of the 22nd Annual Conference on Neural Information Processing Systems. 8–13 December, 2008; Vancouver, British, pp 1929–1936 (2008)
Combettes, P.L., Va, A., Wajs, E.R.: Signal recovery by proximal forward–backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)
Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)
Wen, Z., Yin, W., Goldfarb, D., et al.: A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation. SIAM J. Sci. Comput. 32(4), 1832–1857 (2009)
Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 123–231 (2013)
Lu, C., Tang, J., Yan, S., Lin, Z.: Generalized nonconvex nonsmooth low-rank minimization. In: IEEE International Conference on Computer Vision and Pattern Recognition (2014)
Lu, C., Zhu, C., Xu, C., Yan, S., Lin, Z.: Generalized singular value thresholding. In: Proceedings of the AAAI Conference on Artificial Intelligence (2015)
Mordukhovich, B.S.: Variational analysis and generalized differentiation. I: Basic theory, Cs.nmu.edu (2006)
Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, New York (2009)
Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (2015)
Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic Publishers, Dordrecht (2004)
Lojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réls[J]. Les équations aux dérivées partielles 117, 87–89 (1963)
Kurdyka, K.: On gradients of functions definable in o-minimal structures. Annales de l’institut Fourier 48(3), 769–783 (1998)
Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. 116(1–2), 5–16 (2009)
Attouch, H., Bolte, J., Redont, P., et al.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Lojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)
Bolte, J., Daniilidis, A., Lewis, A.: The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17(4), 1205–1223 (2007)
Bolte, J., Daniilidis, A., Lewis, A., et al.: Clarke subgradients of stratifiable functions. SIAM J. Optim. 18(2), 556–572 (2007)
Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forwardCbackward splitting, and regularized gauss-seidel methods. Math. Program. 137(1–2), 91–129 (2013)
Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1–2), 459–494 (2014)
Acknowledgements
The authors are indebted to the editors and anonymous referees for their useful suggestions. We are grateful for the support from the National Natural Science Foundation of Hunan Province, China (13JJ2001), the Science Project of National University of Defense Technology (JC120201), and the National Science Foundation of China (61402495).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sun, T., Jiang, H. & Cheng, L. Global convergence of proximal iteratively reweighted algorithm. J Glob Optim 68, 815–826 (2017). https://doi.org/10.1007/s10898-017-0507-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-017-0507-z
Keywords
- Proximal iteratively reweighted algorithm
- Kurdyka–Łojasiewicz function
- Convergence analysis
- Parallel splitting
- Alternating updating