Improving the convergence rate of the DIRECT global optimization algorithm | Journal of Global Optimization Skip to main content
Log in

Improving the convergence rate of the DIRECT global optimization algorithm

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

DIRECT is derivative-free global-search algorithm has been found to perform robustly across a wide variety of low-dimensional test problems. The reason DIRECT’s robustness is its lack of algorithmic parameters that need be “tuned” to make the algorithm perform well. In particular, there is no parameter that determines the relative emphasis on global versus local search. Unfortunately, the same algorithmic features that enable DIRECT to perform so robustly have a negative side effect. In particular, DIRECT is usually quick to get close to the global minimum, but very slow to refine the solution to high accuracy. This is what we call DIRECT’s “eventually inefficient behavior.” In this paper, we outline two root causes for this undesirable behavior and propose modifications to eliminate it. The paper builds upon our previously published “MrDIRECT” algorithm, which we can now show only addressed the first root cause of the “eventually inefficient behavior.” The key contribution of the current paper is a further enhancement that allows MrDIRECT to address the second root cause as well. To demonstrate the effectiveness of the enhanced MrDIRECT, we have identified a set of test functions that highlight different situations in which DIRECT has convergence issues. Extensive numerical work with this test suite demonstrates that the enhanced version of MrDIRECT does indeed improve the convergence rate of DIRECT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Björkman, M., Holmström, K.: Global optimization using the DIRECT algorithm in Matlab. Adv. Model. Optim. 1, 17–37 (1999)

    MATH  Google Scholar 

  2. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Elsakov, S.M., Shiryaev, V.I.: Homogeneous algorithms for multiextremal optimization. Comput. Math. Math. Phys. 50(10), 1642–1654 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Finkel D.E.: Global optimization with the DIRECT algorithm. PHD thesis, North Carolina State University (2005)

  5. Finkel, D.E., Kelley, C.T.: Additive scaling and the DIRECT algorithm. J. Global Optim. 36, 597–608 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Floudas, C.A., Gounaris, C.E.: A review of recent advances in global optimization. J. Global Optim. 45, 3–38 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Y.D.: Algorithm 829: software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. 9(4), 469–480 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gaviano, M., Lera, D.: Test functions with variable attraction regions for global optimization problems. J. Global Optim. 13(2), 207–223 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J. Global Optim. 21, 27–37 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hedar A.: http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm

  11. He, J., Watson, L.T., et al.: Dynamic data structures for a direct search algorithm. Comput. Optim. Appl. 23(1), 5–25 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Holland, J.H.: Adaption in Nature and Artificial Systems, 2nd edn. MIT Press, Cambrige, MA (1992)

    Google Scholar 

  13. Holmstrom, K., Goran A.O., Edvall M.M.: User’s Guide for TOMLAB 7. Tomlab optimization. http://tomopt.com

  14. Huyer, W., Neumaier, A.: Global optimization by multilevel coordinate search. J. Global Optim. 14(4), 331–355 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jones, D.R.: The DIRECT global optimization algorithm. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of optimization. Kluwer Academic, Dordrecht (2001)

  17. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lera, D., Sergeyev, Y.D.: Deterministic global optimization using space-filling curves and multiple estimates of Lipschitz and H\(\ddot{o}\)lder constants. Commun. Nonlinear Sci. Numer. Simul. 23(1–3), 328–342 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liang J.J.: Novel particle swarm optimizers with hybrid, dynamic & adaptive neighborhood structures. PhD thesis, Nanyang Technological University, Singapore (2008)

  20. Liang J.J., Qu B.Y., Suganthan P.N.: Problem definitions and evaluation criteria for the CEC 2013 special session and competition on real-parameter optimization. Technical Report 201212, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, January (2013)

  21. Liu, Q.F.: Linear scaling and the DIRECT algorithm. J. Global Optim. 56(3), 1233–1245 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, Q.F., Cheng, W.Y.: A modified DIRECT algorithm with bilevel partition. J. Global Optim. 60(3), 483–499 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, Q.F., Zeng, J.P.: Global optimization by multilevel partition. J. Global Optim. 61(1), 47–69 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, Q.F., Zeng, J.P., Yang, G.: MrDIRECT: a multilevel robust DIRECT algorithm for global optimization problems. J. Global Optim. 62(2), 205–227 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Liuzzi, G., Lucidi, S., Piccialli, V.: A DIRECT-based approach exploiting local minimizations for the solution of large-scale global optimization problems. Comput. Optim. Appl. 45(2), 353–375 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liuzzi, G., Lucidi, S., Piccialli, V.: A partion-based global optimization algorithm. J. Global Optim. 48, 113–128 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liuzzi, G., Lucidi, S., Piccialli, V.: Exploiting derivative-free local searches in DIRECT-type algorithms for global optimization. Comput. Optim. Appl. (2015). doi:10.1007/s10589-015-9741-9

  28. Ljunberg, K., Holmgren, S.: Simultaneous search for multiple QTL using the global optimization algorithm DIRECT. Bioinformatics 20(12), 1887–1895 (2004)

    Article  Google Scholar 

  29. Moré, J., Wild, S.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20(1), 172–191 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pardalos, P.M., Schoen, F.: Recent advances and trends in global optimization: deterministic and stochastic methods. In: Proceedings of the Sixth International Conference on Foundations of Computer-Aided Process Design, DSI, vol. 1, pp. 119–131 (2004)

  31. Paulavic̆ius, R., Sergeyev, Y.D., Kvasov, D.E., Z̆ilinskas, J.: Globally-biased Disimpl algorithm for expensive global optimization. J. Global Optim. 59, 545–567 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Global Optim. 56(3), 1247–1293 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Žilinskas, A.: On strong homogeneity of two global optimization algorithms based on statistical models of multimodal objective functions. Appl. Math. Comput. 218(16), 8131–8136 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank two anonymous reviewers for their very helpful suggestions, which improve this paper greatly. We would like to thank Doctor Finkel D.E., Professor Kelley C.T. and Professor Sergeyev Ya. D. for their DIRECT code and the GKLS codes, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinping Zeng.

Additional information

This work was supported by National Natural Science Foundation of China (Grant No. 11271069) and Natural Science Foundation of Guangdong Province, China (No. 2015A030313648).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Yang, G., Zhang, Z. et al. Improving the convergence rate of the DIRECT global optimization algorithm. J Glob Optim 67, 851–872 (2017). https://doi.org/10.1007/s10898-016-0447-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-016-0447-z

Keywords

Navigation