Abstract
Designing island models is a challenging task for researchers. A number of decisions is required regarding the structure of the islands, how they are connected, how many individuals are migrated, which ones and how often. The impact of these choices is yet to be fully understood, specially since it may change between different problems and contexts. Cluster geometry optimization is a widely known and complex problem that provides a set of hard instances to assess and test optimization algorithms. The analysis presented in this paper reveals how design options for island models impact search effectiveness and population diversity, when seeking for the global optima of short-ranged Morse clusters. These outcomes support the definition of a robust and scalable island-based framework for cluster geometry optimization problems.
Similar content being viewed by others
References
Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. Evol. Comput. IEEE Trans. 6(5), 443–462 (2002)
Alba, E., Troya, J.: A survey of parallel distributed genetic algorithms. Complexity 4(4), 31–52 (1999)
Bethke, A.: Comparison of genetic algorithms and gradient-based optimizers on parallel processors: efficiency of use of processing capacity. Technical Report No. 197, University of Michigan, Logic of Computers Group, Ann Arbor (1976)
Braun, H.: On solving travelling salesman problems by genetic algorithms. In: Schwefel, H.P., Männer, R. (eds.) Parallel Problem Solving From Nature, pp. 129–133. Springer, Berlin (1990)
Cantú-Paz, E.: A survey of parallel genetic algorithms. Calculateurs paralleles, reseaux et systems repartis 10(2), 141–171 (1998)
Cantú-Paz, E.: Migration policies, selection pressure, and parallel evolutionary algorithms. J. Heuristics 7, 311–334 (2001)
Cantú-Paz, E., Goldberg, D.E.: Modeling idealized bounding cases of parallel genetic algorithms. In: Koza, J., Deb, K., Dorigo, M., Fogel, D., Garzon, M., Iba, H., Riolo, R. (eds.) Proceedings of the Second Annual Conference on Genetic Programming. Morgan Kaufmann, San Francisco (1997)
Cantú-Paz, E., Mejia-Olvera, M.: Experimental results in distributed genetic algorithms. In: International Symposium on Applied Corporate Computing, pp. 99–108 (1994)
Cassioli, A., Locatelli, M., Schoen, F.: Global optimization of binary Lennard–Jones clusters. Optim. Methods Softw. 24, 819–835 (2009)
Cassioli, A., Locatelli, M., Schoen, F.: Dissimilarity measures for population-based global optimization algorithms. Comput. Optim. Appl. 45, 257–281 (2010)
Cheng, L.: A connectivity table for cluster similarity checking in the evolutionary optimization method. Chem. Phys. Lett. 389, 309–314 (2004)
Cheng, L., Feng, Y., Yang, J., Yang, J.: Funnel hopping: searching the cluster potential energy surface over the funnels. J. Chem. Phys. 130(21), 214,112 (2009)
Cheng, L., Yang, J.: Global minimum structures of morse clusters as a function of the range of the potential: \(81 \le \text{ n } \le 160\). J. Phys. Chem. A 111(24), 5287–5293 (2007)
Cohoon, J., Hegde, S., Martin, W., Richards, D.: Punctuated equilibria: a parallel genetic algorithm. In: Proceedings of the Second International Conference on Genetic Algorithms and their applications, pp. 148–154. L. Erlbaum Associates Inc., Hillsdale (1987)
Cohoon, J.P., Martin, W.N., Richards, D.S.: A multi-population genetic algorithm for solving the k-partition problem on hyper-cubes. In: Proceedings of the Fourth International Conference on Genetic Algorithms, vol. 91, pp. 244–248 (1991)
Darby, S., Mortimer-Jones, T.V., Johnston, R.L., Roberts, C.: Theoretical study of Cu–Au nanoalloy clusters using a genetic algorithm. J. Chem. Phys. 116, 1536–1550 (2002)
De Jong, K.: An analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis (1975)
De Jong, K.A., Sarma, J.: Generation gaps revisited. In: Foundations of Genetic Algorihtms 2, pp. 19–28 (1992)
Deaven, D.M., Ho, K.M.: Molecular geometry optimization with a genetic algorithm. Phys. Rev. Lett. 75, 288–291 (1995)
Doye, J.P., Wales, D.J.: Structural consequences of the range of the interatomic potential a menagerie of clusters. J. Chem. Soc. Faraday Trans. 93(24), 4233–4243 (1997)
Doye, J.P.K., Leary, R.H., Locatelli, M., Schoen, F.: Global optimization of Morse clusters by potential energy transformations. INFORMS J. Comput. 16, 371–379 (2004)
Dugan, N., Erkoc, S.: Genetic algorithm—Monte Carlo hybrid geometry optimization method for atomic clusters. Comput. Mater. Sci. 45(1), 127–132 (2009)
Eldredge, N., Gould, S.J.: Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf, T.J.M. (ed.) Models in Paleobiology, pp. 82–115. Freeman Cooper, San Francisco (1972)
Feng, Y., Cheng, L., Liu, H.: Putative global minimum structures of morse clusters as a function of the range of the potential: \(161 \le \text{ n } \le 240\). J. Phys. Chem. A 113(49), 13651–13655 (2009)
Fernández, F., Tomassini, M., Punch, W., Sánchez, J.: Experimental study of multipopulation parallel genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J.F., Nordin, P., Fogarty, T.C. (eds.) Genetic Programming, vol. 1802, pp. 283–293. Springer, Berlin (2000)
Fernández, F., Tomassini, M., Vanneschi, L.: An empirical study of multipopulation genetic programming. Genet. Program. Evol. Mach. 4, 21–51 (2003)
Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algorithms. In: Rawlins, G. (ed.) Foundations of Genetic Algorithms, pp. 69–93. Morgan Kaufmann, San Mateo (1991)
Grefenstette, J.J.: Parallel Adaptive Algorithms for Function Optimization: (preliminary Report). Vanderbilt University, Computer Science Department (1981)
Gregurick, S.K., Alexander, M.H., Hartke, B.: Global geometry optimization of \(\text{(Ar) }_{n}\) and \(\text{ B(Ar) }_{n}\) clusters using a modified genetic algorithm. J. Chem. Phys. 104, 2684–2691 (1996)
Grosso, A., Locatelli, M., Schoen, F.: A population-based approach for hard global optimization problems based on dissimilarity measures. Math. Program. 110, 373–404 (2007)
Grosso, P.B.: Computer simulations of genetic adaptation: parallel subcomponent interaction in a multilocus model. Ph.D. thesis (1985)
Guimarães, F.F., Belchior, J.C., Johnston, R.L., Roberts, C.: Global optimization analysis of water clusters \((\text{ h }_{2}\text{ o })_{n}\) \((11\le \text{ n }\le 13)\) through a genetic evolutionary approach. J. Chem. Phys. 116, 8327–8333 (2002)
Hartke, B.: Global geometry optimization of clusters using genetic algorithms. J. Phys. Chem. 97(39), 9973–9976 (1993)
Hartke, B.: Global cluster geometry optimization by a phenotype algorithm with niches: location of elusive minima, and low-order scaling with cluster size. J. Comput. Chem. 20(16), 1752–1759 (1999)
Hartke, B.: Application of evolutionary algorithms to global cluster geometry optimization. In: Johnston, R.L. (ed.) Applications of Evolutionary Computation in Chemistry, vol. 110, pp. 33–53. Springer, Berlin (2004)
Hobday, S., Smith, R.: Optimisation of carbon cluster geometry using a genetic algorithm. J. Chem. Soc. Faraday Trans. 93(22), 3919–3926 (1997)
Holland, J.: A universal computer capable of executing an arbitrary number of sub-programs simultaneously. In: Eastern Joint IRE-AIEE-ACM Computer Conference, pp. 108–113. ACM (1959)
Holland, J.: Iterative circuit computers. In: Western Joint IRE-AIEE-ACM Computer Conference, pp. 259–265. ACM (1960)
Iwamatsu, M.: Global geometry optimization of silicon clusters using the space-fixed genetic algorithm. J. Chem. Phys. 112, 10976–10983 (2000)
Johnston, R.L.: Evolving better nanoparticles: genetic algorithms for optimising cluster geometries. Dalton Trans. 22, 4193–4207 (2003)
Jones, J.E.: On the determination of molecular fields. II. From the equation of state of a gas. R. Soc. Lond. Proc. Ser. A 106, 463–477 (1924)
Krasnogor, N.: Towards robust memetic algorithms. In: Hart, W.E., Krasnogor, N., Smith, J.E. (eds.) Recent Advances in Memetic Algorithms, pp. 185–207. Springer, Berlin (2004)
Krasnogor, N., Blackburne, B., Burke, E.K., Hirst, J.D.: Multimeme algorithms for protein structure prediction. In: Merelo, J.J., Adamidis, P., Beyer, H.G. (eds.) Parallel Problem Solving from Nature–PPSN VII, pp. 769–778. Springer, Berlin (2002)
Lee, J., Lee, I.H., Lee, J.: Unbiased global optimization of Lennard-Jones clusters for \(n\le 201\) using the conformational space annealing method. Phys. Rev. Lett. 91(8), 080,201 (2003)
Leitão, A., Pereira, F.B., Machado, P.: Enhancing cluster geometry optimization with island models. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2012, Brisbane, Australia, June 10–15, 2012, pp. 1–8. IEEE (2012)
Lennard-Jones, J.E.: Cohesion. Proc. Phys. Soc. 43, 461–482 (1931)
Lin, S., Punch III, W., Goodman, E.: Coarse-grain parallel genetic algorithms: categorization and new approach. In: Proceedings of the 6th IEEE Symposium on Parallel and Distributed Processing, pp. 28–37 (1994)
Liu, D.C., Nocedal, J.: On the limited memory bfgs method for large scale optimization. Math. Program. 45, 503–528 (1989)
Locatelli, M., Schoen, F.: Fast global optimization of difficult Lennard-Jones clusters. Comput. Optim. Appl. 21, 55–70 (2002)
Locatelli, M., Schoen, F.: Efficient algorithms for large scale global optimization: Lennard-Jones clusters. Comput. Optim. Appl. 26, 173–190 (2003)
Lozano, M., Herrera, F., Krasnogor, N., Molina, D.: Real-coded memetic algorithms with crossover hill-climbing. Evol. Comput. 12(3), 273–302 (2004)
Mahfoud, S.W.: Niching methods for genetic algorithms. Ph.D. thesis (1995)
Marques, J.M.C., Llanio-Trujillo, J.L., Abreu, P.E., Pereira, F.B.: How different are two chemical structures? J. Chem. Inf. Model. 50(12), 2129–2140 (2010)
Martin, W.N., Lienig, J., Cohoon, J.P.: Island (migration) Models: Evolutionary Algorithms Based on Punctuated Equilibria. Oxford University Press Inc, New York (1997)
Morse, P.M.: Diatomic molecules according to the wave mechanics. ii. vibrational levels. Phys. Rev. 34(1), 57–64 (1929)
Munetomo, M., Takai, Y., Sato, Y.: An efficient migration scheme for subpopulation-based asynchronously parallel genetic algorithms. In: Proceedings of the 5th International Conference on Genetic Algorithms, p. 649. Morgan Kaufmann Publishers Inc. (1993)
Niesse, J.A., Mayne, H.R.: Global geometry optimization of atomic clusters using a modified genetic algorithm in space-fixed coordinates. J. Chem. Phys. 105, 4700–4706 (1996)
Pelta, D.A., Krasnogor, N.: Multimeme algorithms using fuzzy logic based memes for protein structure prediction. In: Recent Advances in Memetic Algorithms, pp. 49–64. Springer, Berlin (2005)
Pereira, F., Marques, J.: A self-adaptive evolutionary algorithm for cluster geometry optimization. In: Proceedings of the 8th International Conference on Hybrid Intelligent Systems, pp. 678–683 (2008)
Pereira, F., Marques, J.: A study on diversity for cluster geometry optimization. Evol. Intell. 2, 121–140 (2009)
Pereira, F., Marques, J., Leitao, T., Tavares, J.: Analysis of locality in hybrid evolutionary cluster optimization. In: Evolutionary Computation, 2006. CEC 2006. IEEE Congress on, pp. 2285–2292 (2006)
Pereira, F.B., Marques, J., Leitao, T., Tavares, J.: Designing efficient evolutionary algorithms for cluster optimization: a study on locality. In: Advances in Metaheuristics for Hard Optimization. Natural Computing Series, pp. 223–250. Springer, Berlin (2008)
Pullan, W.: Genetic operators for the atomic cluster problem. Comput. Phys. Commun. 107(1–3), 137–148 (1997)
Pullan, W.: An unbiased population-based search for the geometry optimization of Lennard-Jones clusters: \(2 \le \text{ n } \le 372\). J. Comput. Chem. 26(9), 899–906 (2005)
Rata, I., Shvartsburg, A.A., Horoi, M., Frauenheim, T., Siu, K.W.M., Jackson, K.A.: Single-parent evolution algorithm and the optimization of Si clusters. Phys. Rev. Lett. 85, 546–549 (2000)
Roberts, C., Johnston, R.L., Wilson, N.T.: A genetic algorithm for the structural optimization of morse clusters. Theor. Chem. Acc. Theory Comput. Model. 104, 123–130 (2000)
Sastry, K., Xiao, G.: Cluster optimization using extended compact genetic algorithm. Urbana 51, 61,801 (1989)
Sekaj, I.: Robust parallel genetic algorithms with re-initialisation. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Guervós, J.J.M., Bullinaria, J.A., Rowe, J.E., Tiño, P., Kabán, A., Schwefel, H.P. (eds.) Parallel Problem Solving from Nature—PPSN VIII, vol. 3242, pp. 411–419. Springer, Berlin (2004)
Shao, X., Cheng, L., Cai, W.: A dynamic lattice searching method for fast optimization of Lennard-Jones clusters. J. Comput. Chem. 25(14), 1693–1698 (2004)
Skolicki, Z.: An analysis of island models in evolutionary computation. In: Proceedings of the 2005 Workshops on Genetic and Evolutionary Computation, GECCO ’05, pp. 386–389. ACM (2005)
Skolicki, Z., De Jong, K.: The influence of migration sizes and intervals on island models. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, GECCO ’05, pp. 1295–1302. ACM (2005)
Smirnov, B.M., Strizhev, A.Y., Berry, R.S.: Structures of large Morse clusters. J. Chem. Phys. 110, 7412–7420 (1999)
Smith, J.: On replacement strategies in steady state evolutionary algorithms. Evol. Comput. 15, 29–59 (2007)
Stillinger, F.H.: Exponential multiplicity of inherent structures. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 59, 48–51 (1999)
Taillard, É.D., Waelti, P., Zuber, J.: Few statistical tests for proportions comparison. Eur. J. Oper. Res. 185(3), 1336–1350 (2008)
Tanese, R.: Parallel genetic algorithms for a hypercube. In: Proceedings of the Second International Conference on Genetic Algorithms and Their Application, pp. 177–183. L. Erlbaum Associates Inc. (1987)
Tanese, R.: Distributed genetic algorithm. In: Proceedings of the Third International Conference on Genetic Algorithms, pp. 434–439 (1989)
Tanese, R.: Distributed genetic algorithms for function optimization. Tech. rep. (1989)
Tsai, C.J., Jordan, K.D.: Use of the histogram and jump-walking methods for overcoming slow barrier crossing behavior in Monte Carlo simulations: Applications to the phase transitions in the \(\text{(Ar) }_{13}\) and \((\text{ H }_{2}\text{ O })_{8}\) clusters. J. Chem. Phys. 99, 6957–6970 (1993)
Whitley, D., Rana, S., Heckendorn, R.: The island model genetic algorithm: on separability, population size and convergence. J. Comput. Inf. Technol. 7, 33–48 (1999)
Whitley, D., Starkweather, T.: Genitor II: a distributed genetic algorithm. J. Exp. Theor. Artif. Intell. 2(3), 189–214 (1990)
Whitley, L.D.: The genitor algorithm and selection pressure: why rank-based allocation of reproductive trials is best. In: Proceedings of the 3rd International Conference on Genetic Algorithms, pp. 116–123 (1989)
Xiao, Y., Williams, D.E.: Genetic algorithm: a new approach to the prediction of the structure of molecular clusters. Chem. Phys. Lett. 215, 17–24 (1993)
Zeiri, Y.: Prediction of the lowest energy structure of clusters using a genetic algorithm. Phys. Rev. E 51(4), R2769 (1995)
Zhao, J., Xie, R.H.: Genetic algorithms for the geometry optimization of atomic and molecular clusters. J. Comput. Theor. Nanosci. 1(2), 117–131 (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Leitão, A., Pereira, F.B. & Machado, P. Island models for cluster geometry optimization: how design options impact effectiveness and diversity. J Glob Optim 63, 677–707 (2015). https://doi.org/10.1007/s10898-015-0302-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-015-0302-7