Abstract
Robust analysis is important for designing and analyzing algorithms for global optimization. In this paper, we introduce a new concept, robust constant, to quantitatively characterize the robustness of measurable sets and functions. The new concept is consistent to the theoretical robustness presented in literatures. This paper shows that, from the respects of convergence theory and numerical computational cost, robust constant is valuable significantly for analyzing random global search methods for unconstrained global optimization.
Similar content being viewed by others
Notes
The robustness of a function defined by Zheng [32] will be introduced in the next section.
References
Appel, M.J., Labarre, R., Radulovic, D.: On accelerated random search. SIAM J. Optim. 14, 708–731 (2003)
Baritompa, W., Zhang, B.P., Wood, G.R., Zabinsky, Z.B.: Towards pure adaptive search-a general framework and a one-dimensional realisation. J. Glob. Optim. 7, 93–110 (1995)
De Boer, P.T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy method. Ann. Oper. Res. 134, 19–67 (2005)
Brooks, S.H.: A discussion of random methods for seeking maxima. Oper. Res. 6, 244–251 (1958)
Bulger, D.W., Wood, G.R.: Hesitant adaptive search for global optimisation. Math. Progr. 81, 89–102 (1998)
Bulger, D., Baritompa, W., Wood, G.R.: Implementing pure adaptive search with Grover’s quantum algorithm. J. Optim. Theory Appl. 116(3), 517–529 (2003)
Chew, S., Zheng, Q.: Integral Global Optimization (Theory, Implementation and Applications). Springer, Berlin (1988)
Floudas, C.A., Gounaris, C.E.: A review of recent advances in global optimization. J. Glob. Optim. 45(1), 3–38 (2009)
Hu, J., Fu, M.C., Marcus, S.I.: A model reference adaptive search method for global optimization. Oper. Res. 55(3), 549–568 (2007)
Kabirian, A.: Hybrid probabilistic search methods for simulation optimization. J. Ind. Syst. Eng. 2(4), 259–270 (2009)
Kroese, D.P., Porotsky, S., Rubinstein, R.Y.: The cross-entropy method for continuous multi-extremal optimization. Methodol. Comput. Appl. Probab. 8, 383–407 (2006)
Pardalos, P.M., Romeijn, H.E., Tuy, H.: Recent developments and trends in global optimization. J. Comput. Appl. Math. 124, 209–228 (2000)
Patel, N.R., Smith, R.L., Zabinsky, Z.B.: Pure adaptive search in Monte-Carlo optimization. Math. Progr. 43, 317–328 (1988)
Peng, Z., Wu, D., Zheng, Q.: A level-value estimation method and stochastic implementation for global optimization. J. Optim. Theory Appl. 156(2), 493–523 (2013)
Peng, Z., Shen, Y., Wu, D.H.: A modified integral global optimization method and its asymptotic convergence. Acta Math. Appl. Sin (Engl. Ser.) 25(2), 283–290 (2009)
Pinter, J.: Convergence qualification of adaptive partition algorithms in global optimization. Math. Progr. 56, 343–360 (1992)
Price, C.J., Reale, M., Robertson, B.L.: A cover partitioning method for bound constrained global optimization. Optim. Methods Softw. 27, 1059–1072 (2012)
Price, C.J., Reale, M., Robertson, B.L.: One side cut accelerated random search—A direct search method for bound constrained global optimization. Optim. Lett. 8, 1137–1148 (2014)
Radulovia, D.: Pure random search with exponential rate of convergency. Optimization 59(2), 289–303 (2010)
Rinnooy Kan, A.H.G., Timmer, G.T.: Stochastic global optimization methods part I: clustering methods. Math. Progr. 39, 27–56 (1987)
Rinnooy Kan, A.H.G., Timmer, G.T.: Stochastic global optimizationmethods part II: multi-level methods. Math. Progr. 39, 57–78 (1987)
Rubinstein, R.Y.: The cross-entropy method for combinatorial and continuous optimization. Methodol. Comput. Appl. Probab. 2, 127–190 (1999)
Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning. Springer, New York (2004)
Schoen, F.: Stochastic techniques for global optimization: a survey of recent advances. J. Global Optim. 1(3), 207–228 (1991)
Tang, Z.B.: Adaptive partitioned random search to global optimization. IEEE Trans. Autom. Control 11, 2235–2244 (1994)
Thomas, W.: Global optimization algorithms – theory and application. http://www.it-weise.de/
Vavasis, S.A.: Complexity issues in global optimization: a survey. In: Horst, R., Pardalos, P.M. (eds.) Handbook of Global Optimization, pp. 27–41. Kluwer, The Netherlands (1995)
Wu, D.H., Yu, W.Y., Zheng, Q.: A sufficient and necessary condition for global optimization. Appl. Math. Lett. 23(1), 17–21 (2010)
Yao, Y.R., Chen, L., Zheng, Q.: Optimality condition and algorithm with deviation integral for global optimization. J. Math. Anal. Appl. 357(2), 371–384 (2009)
Zabinsky, Z.B., Smith, R.L.: Pure adaptive search in global optimization. Math. Progr. 53, 323–338 (1992)
Zabinsky, Z.B., Wood, G.R., Steel, M.A., Baritompa, W.P.: Pure adaptive search for finite global optimization. Math. Progr. 69, 443–448 (1995)
Zheng, Q.: Robust analsys and global optimization. Ann. Oper. Res. 24, 273–286 (1990)
Zheng, Q., Zhuang, D.M.: Integral global minimization: algorithms, implementations and numerical tests. J. Glob. Optim. 7, 421–454 (1995)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by the Natural Science Foundation of China (61170308), Major Science Foundation of Fujian Provincial Department of Education (JA14037) and talent foundation of Fuzhou University (XRC-1043).
Rights and permissions
About this article
Cite this article
Peng, Z., Wu, D. & Zhu, W. The robust constant and its applications in random global search for unconstrained global optimization. J Glob Optim 64, 469–482 (2016). https://doi.org/10.1007/s10898-014-0256-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-014-0256-1