Viscosity approximation methods for a nonexpansive semigroup in Banach spaces with gauge functions | Journal of Global Optimization Skip to main content
Log in

Viscosity approximation methods for a nonexpansive semigroup in Banach spaces with gauge functions

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We first investigate strong convergence of the sequence generated by implicit and explicit viscosity approximation methods for a one-parameter nonexpansive semigroup in a real Banach space E which has a uniformly Gâteaux differentiable norm and admits the duality mapping j φ , where φ is a gauge function on [0, ∞). The main results also improve and extend some known results concerning the normalized duality mapping in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Halpern B.: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957–961 (1967)

    Article  Google Scholar 

  2. Lions P.L.: Approximation de points fixes de contractions. C.R. Acad. Sci. Paris Ser. A-B 284, A1357–A1359 (1977)

    Google Scholar 

  3. Reich S.: Approximating fixed points of nonexpansive mappings. PanAmer. Math. J. 4(2), 23–28 (1994)

    Google Scholar 

  4. Wittmann R.: Approximation of fixed points of nonexpansive mappings. Arch. Math. (Basel) 58, 486–491 (1992)

    Article  Google Scholar 

  5. Shioji N., Takahashi W.: Strong convergence of approximated sequences for nonexpansive mapping in Banach spaces. Proc. Am. Math. Soc. 125, 3641–3645 (1997)

    Article  Google Scholar 

  6. Aoyama K., Kimura Y., Takahashi W., Toyoda M.: Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space. Nonlinear Anal. TMA. 67, 2350–2360 (2007)

    Article  Google Scholar 

  7. Chidume C.E., Chidume C.O.: Iterative approximation of fixed points of nonexpansive mappings. J. Math. Anal. Appl. 318, 288–295 (2006)

    Article  Google Scholar 

  8. Kim T.H., Xu H.K.: Strong convergence of modified Mann iterations. Nonlinear Anal. TMA. 61, 51–60 (2005)

    Article  Google Scholar 

  9. Reich S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75, 287–292 (1980)

    Article  Google Scholar 

  10. Xu H.K.: Another control condition in iterative method for nonexpansive mappings. Bull. Astral. Math. Soc. 65, 109–113 (2002)

    Article  Google Scholar 

  11. Xu H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)

    Article  Google Scholar 

  12. Moudafi A.: Viscosity approximation methods for fixed point problems. J. Math. Anal. Appl. 241, 46–55 (2000)

    Article  Google Scholar 

  13. Xu H.K.: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298, 279–291 (2004)

    Article  Google Scholar 

  14. Suzuki T.: On strong convergence to common fixed points of nonexpansive semigroups in Hilbert spaces. Proc. Am. Math. Soc. 131, 2133–2136 (2002)

    Article  Google Scholar 

  15. Xu H.K.: A strong convergence theorem for contraction semigroups in Banach spaces. Bull. Aust. Math. Soc. 72, 371–379 (2005)

    Article  Google Scholar 

  16. Chen R., Song Y.: Converence to common fixed point of nonexpansive semigroups. J. Comput. Appl. Math. 200, 566–575 (2007)

    Article  Google Scholar 

  17. Song Y., Xu S.: Strong convergence theorems for nonexpansive semigroup in Banach spaces. J. Math. Anal. Appl. 338, 152–161 (2008)

    Article  Google Scholar 

  18. Chen R., He H.: Viscosity approximation of common fixed points of nonexpansive semigroups in Banach space. Appl. Math. Lett. 20, 751–757 (2007)

    Article  Google Scholar 

  19. Wangkeeree, R., Kamraksa, U.: Strong convergence theorems of viscosity iterative methods for a countable family of strict pseudo-contractions in Banach spaces. Fixed Point Theory Appl. 2010, 21. Article ID 579725 (2010)

  20. Wangkeeree, R., Petrot, N., Wangkeeree, R.: The general iterative methods for nonexpansive mappings in Banach spaces. J. Glob. Optim. doi:10.1007/s10898-010-9617-6

  21. Kang, J., Su, Y., Zhang, X.: General iterative algorithm for nonexpansive semigroups and variational inequalities in Hilbert spaces. J. Ineq. Appl. 2010, 10. Article ID 264052 (2010)

  22. Lin Q.: Viscosity approximation to common fixed points of a nonexpansive semigroup with a generalized contraction mappings. Nonlinear Anal. TMA. 71, 5451–5457 (2009)

    Article  Google Scholar 

  23. Li X.N., Gu J.S.: Strong convergence of modified Ishikawa iteration for a nonexpansive semigroup in Banach spaces. Nonlinear Anal. TMA. 73, 1085–1092 (2010)

    Article  Google Scholar 

  24. Li S., Li L., Su Y.: General iterative methods for a one-parameter nonexpansive semigroup in Hilbert space. Nonlinear Anal. TMA. 70, 3065–3071 (2009)

    Article  Google Scholar 

  25. Plubtieng S., Punpaeng R.: Fixed-point solutions of variational inequalities for nonexpansive semigroups in Hilbert spaces. Math. Comput. Model. 48, 279–286 (2008)

    Article  Google Scholar 

  26. Suzuki T.: Strong convergence of Krasnoselskii and Manns type sequences for one parameter nonexpansive semigroups without Bochner integrals. J. Math. Anal. Appl. 305, 227–239 (2005)

    Article  Google Scholar 

  27. Shioji N., Takahashi W.: Strong convergence theorems for continuous semigroups in Banach spaces. Math. Japon. 1, 57–66 (1999)

    Google Scholar 

  28. Agarwal R.P., O’Regan D., Sahu D.R.: Fixed Point Theory for Lipschitzian-type Mappings with Applications. Springer, New York (2009)

    Google Scholar 

  29. Chidume, C.E.: Geometric Properties of Banach Spaces and Nonlinear Iterations. In: Lecture Notes Series. Springer (2009)

  30. Takahashi W.: Nonlinear Function Analysis. Yokahama Publishers, Yokahama (2000)

    Google Scholar 

  31. Browder F.E.: Convergence theorems for sequences of nonlinear operators in Banach spaces. Mathematische Zeitschrift 100, 201–225 (1967)

    Article  Google Scholar 

  32. Aleyner A., Censor Y.: Best approximation to common fixed points of a semigroup of nonexpansive operators. J. Nonlinear Convex Anal. 6, 137–151 (2005)

    Google Scholar 

  33. Takahashi W., Ueda Y.: On Reich’s strong convergence for resolvents of accretive operators. J. Math. Anal. Appl. 104, 546–553 (1984)

    Article  Google Scholar 

  34. Megginson R.E.: An Introduction to Banach Space Theory. Springer, New York (1998)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suthep Suantai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cholamjiak, P., Suantai, S. Viscosity approximation methods for a nonexpansive semigroup in Banach spaces with gauge functions. J Glob Optim 54, 185–197 (2012). https://doi.org/10.1007/s10898-011-9756-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9756-4

Keywords

Mathematics Subject Classification (2000)

Navigation