Abstract
We first investigate strong convergence of the sequence generated by implicit and explicit viscosity approximation methods for a one-parameter nonexpansive semigroup in a real Banach space E which has a uniformly Gâteaux differentiable norm and admits the duality mapping j φ , where φ is a gauge function on [0, ∞). The main results also improve and extend some known results concerning the normalized duality mapping in the literature.
Similar content being viewed by others
References
Halpern B.: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957–961 (1967)
Lions P.L.: Approximation de points fixes de contractions. C.R. Acad. Sci. Paris Ser. A-B 284, A1357–A1359 (1977)
Reich S.: Approximating fixed points of nonexpansive mappings. PanAmer. Math. J. 4(2), 23–28 (1994)
Wittmann R.: Approximation of fixed points of nonexpansive mappings. Arch. Math. (Basel) 58, 486–491 (1992)
Shioji N., Takahashi W.: Strong convergence of approximated sequences for nonexpansive mapping in Banach spaces. Proc. Am. Math. Soc. 125, 3641–3645 (1997)
Aoyama K., Kimura Y., Takahashi W., Toyoda M.: Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space. Nonlinear Anal. TMA. 67, 2350–2360 (2007)
Chidume C.E., Chidume C.O.: Iterative approximation of fixed points of nonexpansive mappings. J. Math. Anal. Appl. 318, 288–295 (2006)
Kim T.H., Xu H.K.: Strong convergence of modified Mann iterations. Nonlinear Anal. TMA. 61, 51–60 (2005)
Reich S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75, 287–292 (1980)
Xu H.K.: Another control condition in iterative method for nonexpansive mappings. Bull. Astral. Math. Soc. 65, 109–113 (2002)
Xu H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)
Moudafi A.: Viscosity approximation methods for fixed point problems. J. Math. Anal. Appl. 241, 46–55 (2000)
Xu H.K.: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298, 279–291 (2004)
Suzuki T.: On strong convergence to common fixed points of nonexpansive semigroups in Hilbert spaces. Proc. Am. Math. Soc. 131, 2133–2136 (2002)
Xu H.K.: A strong convergence theorem for contraction semigroups in Banach spaces. Bull. Aust. Math. Soc. 72, 371–379 (2005)
Chen R., Song Y.: Converence to common fixed point of nonexpansive semigroups. J. Comput. Appl. Math. 200, 566–575 (2007)
Song Y., Xu S.: Strong convergence theorems for nonexpansive semigroup in Banach spaces. J. Math. Anal. Appl. 338, 152–161 (2008)
Chen R., He H.: Viscosity approximation of common fixed points of nonexpansive semigroups in Banach space. Appl. Math. Lett. 20, 751–757 (2007)
Wangkeeree, R., Kamraksa, U.: Strong convergence theorems of viscosity iterative methods for a countable family of strict pseudo-contractions in Banach spaces. Fixed Point Theory Appl. 2010, 21. Article ID 579725 (2010)
Wangkeeree, R., Petrot, N., Wangkeeree, R.: The general iterative methods for nonexpansive mappings in Banach spaces. J. Glob. Optim. doi:10.1007/s10898-010-9617-6
Kang, J., Su, Y., Zhang, X.: General iterative algorithm for nonexpansive semigroups and variational inequalities in Hilbert spaces. J. Ineq. Appl. 2010, 10. Article ID 264052 (2010)
Lin Q.: Viscosity approximation to common fixed points of a nonexpansive semigroup with a generalized contraction mappings. Nonlinear Anal. TMA. 71, 5451–5457 (2009)
Li X.N., Gu J.S.: Strong convergence of modified Ishikawa iteration for a nonexpansive semigroup in Banach spaces. Nonlinear Anal. TMA. 73, 1085–1092 (2010)
Li S., Li L., Su Y.: General iterative methods for a one-parameter nonexpansive semigroup in Hilbert space. Nonlinear Anal. TMA. 70, 3065–3071 (2009)
Plubtieng S., Punpaeng R.: Fixed-point solutions of variational inequalities for nonexpansive semigroups in Hilbert spaces. Math. Comput. Model. 48, 279–286 (2008)
Suzuki T.: Strong convergence of Krasnoselskii and Manns type sequences for one parameter nonexpansive semigroups without Bochner integrals. J. Math. Anal. Appl. 305, 227–239 (2005)
Shioji N., Takahashi W.: Strong convergence theorems for continuous semigroups in Banach spaces. Math. Japon. 1, 57–66 (1999)
Agarwal R.P., O’Regan D., Sahu D.R.: Fixed Point Theory for Lipschitzian-type Mappings with Applications. Springer, New York (2009)
Chidume, C.E.: Geometric Properties of Banach Spaces and Nonlinear Iterations. In: Lecture Notes Series. Springer (2009)
Takahashi W.: Nonlinear Function Analysis. Yokahama Publishers, Yokahama (2000)
Browder F.E.: Convergence theorems for sequences of nonlinear operators in Banach spaces. Mathematische Zeitschrift 100, 201–225 (1967)
Aleyner A., Censor Y.: Best approximation to common fixed points of a semigroup of nonexpansive operators. J. Nonlinear Convex Anal. 6, 137–151 (2005)
Takahashi W., Ueda Y.: On Reich’s strong convergence for resolvents of accretive operators. J. Math. Anal. Appl. 104, 546–553 (1984)
Megginson R.E.: An Introduction to Banach Space Theory. Springer, New York (1998)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cholamjiak, P., Suantai, S. Viscosity approximation methods for a nonexpansive semigroup in Banach spaces with gauge functions. J Glob Optim 54, 185–197 (2012). https://doi.org/10.1007/s10898-011-9756-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-011-9756-4
Keywords
- Banach spaces
- Common fixed points
- Gauge functions
- Implicit and explicit viscosity methods
- Nonexpansive semigroup