The block diagram method for designing the particle swarm optimization algorithm | Journal of Global Optimization Skip to main content
Log in

The block diagram method for designing the particle swarm optimization algorithm

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, the block diagram method of the dispersed control system is proposed for designing or improving the normal particle swarm optimization algorithms (PSO), that is, it uses the Jury-test of the control theory to compare the block diagrams getting from existing particle swarm optimization methods and finds out some defects of the existing particle swarm optimization methods, for example, the premature convergence of PSO algorithm, and so on. Thus a new particle swarm algorithm is also proposed for improving these defects, that is, the speed iteration and position iteration formulas of PSO are revised for both adjusting its convergence speed and jumping out of the local minimum points. To show effectiveness of the proposed method, the simulations of 13 benchmark examples are carried out, as a result, it indicates that the proposed method is very useful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. James, K., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, Perth, Australia. IEEE Service Center, Piscataway, NJ, pp. 1942–1948 (1995)

  2. Russell, E., Kennedy, J.: New optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micro Machine and Human Science, pp. 39–43 (1995)

  3. Clerc M., Kennedy J.: The particle swarm—Explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  4. Shi, Y., Eberhart, RC.: A modified particle swarm optimizer. In: Proceedings of the IEEE International Conference on Evolutionary Computation. IEEE Press, Piscataway, NJ, pp. 69–73 (1998)

  5. Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of IEEE Congress Evolutionary Computation, San Diego, CA, pp. 84–88 (2000)

  6. Eberhart, R.C., Shi, Y.: Tracking and optimizing dynamic systems with particle swarms. In: Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1, pp. 94–100 (2001)

  7. Parsopoulos, K.E., Vrahatis, M.N., UPSO: a unified particle swarm optimization scheme. In: Lecture series on computer and computational sciences, Proceedings of international conference on A review of particle swarm optimization computational methods in sciences and engineering (ICCMSE 2004), VSP International Science Publishers, Zeist, The Netherlands, pp. 868–873 (2004)

  8. Parsopoulos, K.E., Vrahatis, M.N.: Unified Particle Swarm Optimization in Dynamic Environments. In: Rothlauf F et al (eds) EvoWorkshops, LNCS 3449, pp. 590–599 (2005a)

  9. Parsopoulos, K.E., Vrahatis, M.N.: Unified particle swarm optimization for tackling operations research problems. Proceedings Swarm Intelligence Symposium SIS pp 53–59 (2005b)

  10. He, S., Wen, J., Prempain, E., Wu, Q., Fitch, J., Mann, S.: An improved particle swam optimization for optimal power flow. In: Proceedings of International Conference in Power Systems Technology, pp. 1633–1637 (2004)

  11. Shinn-Ying H., Hung-Sui L., Weei-Hurng L., Shinn-Jang H.: OPSO: Orthogonal particle swarm optimization and its application to task assignment problems. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 38(2), 288–298 (2008)

    Article  Google Scholar 

  12. Yamille V., Venayagamoorthy G.K., Mohagheghi S., Jean-Carlos H., Harley R.G.: Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput. 12(2), 171–195 (2008)

    Article  Google Scholar 

  13. Sheng-Ta H., Tsung-Ying S., Chun-Ling L., Chan-Cheng L.: Effective learning rate adjustment of blind source separation based on an improved particle swarm optimizer. IEEE Trans. Evol. Comput. 12(2), 242–251 (2008)

    Article  Google Scholar 

  14. Qing-yuan H., Chuan-jiu H.: Improved particle swarm optimization algorithm with disturbance term. Comput. Eng. Appl. 3(7), 84–86 (2007)

    Google Scholar 

  15. Petalas Y.G., Parsopoulos K.E., Vrahatis M.N.: Memetic particle swarm optimization. Ann. Oper. Res. 156, 99–127 (2007)

    Article  Google Scholar 

  16. Alec B., Jonathan V., Chukwudi A.: A review of particle swarm optimization. Part I: Background and development. Nat. Comput. 6, 467–484 (2008)

    Google Scholar 

  17. Alec B., Jonathan V., Chukwudi A.: A review of particle swarm optimization. Part II: Hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat. Comput. 7, 119–124 (2008)

    Google Scholar 

  18. Lovbjerg, M., Rasmussen, T.K., Krink, T.: Hybrid particle swarm optimizer with breeding and subpopulations, Third Genetic and Evolutionary Computation Conference. Piscataway, NJ: IEEE Press (2001)

  19. Higashi, N., Iba, H.: Particle swarm optimization with Gaussian Mutation[C]. In: Proceedings of the 2003 Congress on Evolutionary Computation. Piscataway, NJ: IEEE Press, pp. 72–89 (2003)

  20. Brskar, S., Suganthan. P.N.: A Novel Concurrent Particle Swarm Optimization[C]. In: Proceedings of the 2004 Congress on Evolutionary Computation. Piscataway, NJ: IEEE Press, pp. 792- 796, (2004)

  21. Van den Bergh, F., Engelbrecht, A.P.: Using neighbourhoods with the guaranteed convergence PSO[C]. In: Proceedings of the 2003 IEEE, Swarm Intelligence Symposium, pp. 235–242 (2003)

  22. Millie, P., Radha, T., Ajith, A.: A New PSO Algorithm with Crossover Operator for Global Optimization Problems. In: Novations in Hybrid Intelligent Systems, ASC 44, pp. 215–222 (2007)

  23. Ling S.H., Iu H.H.C., Chan K.Y., Lam H.K., Yeung B.C.W., Leung F.H.: Hybrid particle swarm optimization with wavelet mutation and its industrial applications. IEEE Trans. Syst. Man Cybern. B Cybern. 38(3), 743–763 (2008)

    Article  Google Scholar 

  24. Fan S.-K.S., Zahara E.: A hybrid simplex search and particle swarm optimization for unconstrained optimization. Eur. J. Oper. Res. 181, 527–548 (2007)

    Article  Google Scholar 

  25. Takashi O., Eitaro A.: Global optimization using a synchronization of multiple search Points autonomously driven by a chaotic dynamic model. J. Global Optim. 41(2), 19–244 (2008)

    Google Scholar 

  26. Liang J.J., Qin A.K., Baskar S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)

    Article  Google Scholar 

  27. Salomon R.: Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions. BioSystems 39, 263–278 (1996)

    Article  Google Scholar 

  28. Pardalos P.M., Resende M.: Handbook of Applied Optimization. Oxford University Press, Oxford (2002)

    Google Scholar 

  29. Ahrari A., Ahrari R.: On the utility of randomly generated functions for performance evaluation of evolutionary algorithms. Optim. Lett. 4(4), 531–541 (2010)

    Article  Google Scholar 

  30. Magdalene M., Yannis M., Michael D., Nikolaos M., Constantin Z.: A comparison of several nearest neighbor classifier metrics using Tabu Search algorithm for the feature selection problem. Optim. Lett. 2(3), 299–308 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Baiquan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baiquan, L., Gaiqin, G. & Zeyu, L. The block diagram method for designing the particle swarm optimization algorithm. J Glob Optim 52, 689–710 (2012). https://doi.org/10.1007/s10898-011-9699-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9699-9

Keywords

Navigation