Abstract
In this paper, the block diagram method of the dispersed control system is proposed for designing or improving the normal particle swarm optimization algorithms (PSO), that is, it uses the Jury-test of the control theory to compare the block diagrams getting from existing particle swarm optimization methods and finds out some defects of the existing particle swarm optimization methods, for example, the premature convergence of PSO algorithm, and so on. Thus a new particle swarm algorithm is also proposed for improving these defects, that is, the speed iteration and position iteration formulas of PSO are revised for both adjusting its convergence speed and jumping out of the local minimum points. To show effectiveness of the proposed method, the simulations of 13 benchmark examples are carried out, as a result, it indicates that the proposed method is very useful.
Similar content being viewed by others
References
James, K., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, Perth, Australia. IEEE Service Center, Piscataway, NJ, pp. 1942–1948 (1995)
Russell, E., Kennedy, J.: New optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micro Machine and Human Science, pp. 39–43 (1995)
Clerc M., Kennedy J.: The particle swarm—Explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)
Shi, Y., Eberhart, RC.: A modified particle swarm optimizer. In: Proceedings of the IEEE International Conference on Evolutionary Computation. IEEE Press, Piscataway, NJ, pp. 69–73 (1998)
Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of IEEE Congress Evolutionary Computation, San Diego, CA, pp. 84–88 (2000)
Eberhart, R.C., Shi, Y.: Tracking and optimizing dynamic systems with particle swarms. In: Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1, pp. 94–100 (2001)
Parsopoulos, K.E., Vrahatis, M.N., UPSO: a unified particle swarm optimization scheme. In: Lecture series on computer and computational sciences, Proceedings of international conference on A review of particle swarm optimization computational methods in sciences and engineering (ICCMSE 2004), VSP International Science Publishers, Zeist, The Netherlands, pp. 868–873 (2004)
Parsopoulos, K.E., Vrahatis, M.N.: Unified Particle Swarm Optimization in Dynamic Environments. In: Rothlauf F et al (eds) EvoWorkshops, LNCS 3449, pp. 590–599 (2005a)
Parsopoulos, K.E., Vrahatis, M.N.: Unified particle swarm optimization for tackling operations research problems. Proceedings Swarm Intelligence Symposium SIS pp 53–59 (2005b)
He, S., Wen, J., Prempain, E., Wu, Q., Fitch, J., Mann, S.: An improved particle swam optimization for optimal power flow. In: Proceedings of International Conference in Power Systems Technology, pp. 1633–1637 (2004)
Shinn-Ying H., Hung-Sui L., Weei-Hurng L., Shinn-Jang H.: OPSO: Orthogonal particle swarm optimization and its application to task assignment problems. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 38(2), 288–298 (2008)
Yamille V., Venayagamoorthy G.K., Mohagheghi S., Jean-Carlos H., Harley R.G.: Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput. 12(2), 171–195 (2008)
Sheng-Ta H., Tsung-Ying S., Chun-Ling L., Chan-Cheng L.: Effective learning rate adjustment of blind source separation based on an improved particle swarm optimizer. IEEE Trans. Evol. Comput. 12(2), 242–251 (2008)
Qing-yuan H., Chuan-jiu H.: Improved particle swarm optimization algorithm with disturbance term. Comput. Eng. Appl. 3(7), 84–86 (2007)
Petalas Y.G., Parsopoulos K.E., Vrahatis M.N.: Memetic particle swarm optimization. Ann. Oper. Res. 156, 99–127 (2007)
Alec B., Jonathan V., Chukwudi A.: A review of particle swarm optimization. Part I: Background and development. Nat. Comput. 6, 467–484 (2008)
Alec B., Jonathan V., Chukwudi A.: A review of particle swarm optimization. Part II: Hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat. Comput. 7, 119–124 (2008)
Lovbjerg, M., Rasmussen, T.K., Krink, T.: Hybrid particle swarm optimizer with breeding and subpopulations, Third Genetic and Evolutionary Computation Conference. Piscataway, NJ: IEEE Press (2001)
Higashi, N., Iba, H.: Particle swarm optimization with Gaussian Mutation[C]. In: Proceedings of the 2003 Congress on Evolutionary Computation. Piscataway, NJ: IEEE Press, pp. 72–89 (2003)
Brskar, S., Suganthan. P.N.: A Novel Concurrent Particle Swarm Optimization[C]. In: Proceedings of the 2004 Congress on Evolutionary Computation. Piscataway, NJ: IEEE Press, pp. 792- 796, (2004)
Van den Bergh, F., Engelbrecht, A.P.: Using neighbourhoods with the guaranteed convergence PSO[C]. In: Proceedings of the 2003 IEEE, Swarm Intelligence Symposium, pp. 235–242 (2003)
Millie, P., Radha, T., Ajith, A.: A New PSO Algorithm with Crossover Operator for Global Optimization Problems. In: Novations in Hybrid Intelligent Systems, ASC 44, pp. 215–222 (2007)
Ling S.H., Iu H.H.C., Chan K.Y., Lam H.K., Yeung B.C.W., Leung F.H.: Hybrid particle swarm optimization with wavelet mutation and its industrial applications. IEEE Trans. Syst. Man Cybern. B Cybern. 38(3), 743–763 (2008)
Fan S.-K.S., Zahara E.: A hybrid simplex search and particle swarm optimization for unconstrained optimization. Eur. J. Oper. Res. 181, 527–548 (2007)
Takashi O., Eitaro A.: Global optimization using a synchronization of multiple search Points autonomously driven by a chaotic dynamic model. J. Global Optim. 41(2), 19–244 (2008)
Liang J.J., Qin A.K., Baskar S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)
Salomon R.: Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions. BioSystems 39, 263–278 (1996)
Pardalos P.M., Resende M.: Handbook of Applied Optimization. Oxford University Press, Oxford (2002)
Ahrari A., Ahrari R.: On the utility of randomly generated functions for performance evaluation of evolutionary algorithms. Optim. Lett. 4(4), 531–541 (2010)
Magdalene M., Yannis M., Michael D., Nikolaos M., Constantin Z.: A comparison of several nearest neighbor classifier metrics using Tabu Search algorithm for the feature selection problem. Optim. Lett. 2(3), 299–308 (2008)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Baiquan, L., Gaiqin, G. & Zeyu, L. The block diagram method for designing the particle swarm optimization algorithm. J Glob Optim 52, 689–710 (2012). https://doi.org/10.1007/s10898-011-9699-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-011-9699-9