The min-p robust optimization approach for facility location problem under uncertainty | Journal of Combinatorial Optimization Skip to main content
Log in

The min-p robust optimization approach for facility location problem under uncertainty

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Improper value of the parameter p in robust constraints will result in no feasible solutions while applying stochastic p-robustness optimization approach (p-SRO) to solving facility location problems under uncertainty. Aiming at finding the lowest critical p-value of parameter p and corresponding robust optimal solution, we developed a novel robust optimization approach named as min-p robust optimization approach (min-pRO) for P-median problem (PMP) and fixed cost P-median problem (FPMP). Combined with the nearest allocation strategy, the vertex substitution heuristic algorithm is improved and the influencing factors of the lowest critical p-value are analyzed. The effectiveness and performance of the proposed approach are verified by numerical examples. The results show that the fluctuation range of data is positively correlated with the lowest critical p-value with given number of new facilities. However, the number of new facilities has a different impact on lowest critical p-value with the given fluctuation range of data. As the number of new facilities increases, the lowest critical p-value for PMP and FPMP increases and decreases, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Aghezzaf E (2005) Capacity planning and warehouse location in supply chains with uncertain demands. J Operat Res Soc 56(4):453–462

    Article  MATH  Google Scholar 

  • Ahuja RK, Ergun Ő, Orlin JB, Punnen AP (2002) A survey of very large-scale neighborhood search techniques. Discret Appl Math 123(1–3):75–102

    Article  MathSciNet  MATH  Google Scholar 

  • Avella P, Boccia M, Salerno S, Vasilyev I (2012) An aggregation heuristic for large scale p-median problem. Comput Oper Res 39(7):1625–1632

    Article  MathSciNet  MATH  Google Scholar 

  • Beasley JE (1993) Lagrangean heuristics for location problems. Eur J Oper Res 65(3):383–399

    Article  MATH  Google Scholar 

  • Ben-Tal A, El-Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press, New Jersey

    Book  MATH  Google Scholar 

  • Ben-Tal A, Nemirovski A (1998) Robust convex optimization. Math Oper Res 23(4):769–805

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Tal A, Nemirovski A (1999) Robust solutions of uncertain linear programs. Oper Res Lett 25:1–13

    Article  MathSciNet  MATH  Google Scholar 

  • Berman O, Hajizadeh I, Krass D (2013) The maximum covering problem with travel time uncertainty. IIE Trans 45(1):81–96

    Article  Google Scholar 

  • Birge JR, Louveaux F (2011) Introduction to Stochastic Programming. Springer, New York

    Book  MATH  Google Scholar 

  • Buchheim C, Kurtz J (2018) Complexity of min-max-min robustness for combinatorial optimization under discrete uncertainty. Discret Optim 28:1–15

    Article  MathSciNet  MATH  Google Scholar 

  • Chen Y, Lai Z, Wang Z, Yang D, Wu L (2021) Optimizing locations of waste transfer stations in rural areas. PLoS ONE 16(5):e0250962

    Article  Google Scholar 

  • Daskin MS (1997) Network and discrete location: Models, algorithms and applications. J Operat Res Soc 48(7):763–764

    Article  Google Scholar 

  • Dembo RS (1991) Scenario optimization. Ann Oper Res 30(1):63–80

    Article  MathSciNet  MATH  Google Scholar 

  • Densham PJ, Rushton G (1992) A more efficient heuristic for solving large p-median problems. Pap Reg Sci 71(3):307–329

    Article  Google Scholar 

  • El-Ghaoui L, Lebret H (1997) Robust solutions to least-square problems to uncertain data matrices. Siam J Matrix Anal Appl 18(4):1035–1064

    Article  MathSciNet  MATH  Google Scholar 

  • Fan KW (2007). Study on p-Robust Stochastic Facility Location Problem. International Conference on Management Science and Engineering. IEEE, pp. 455–458

  • Fereiduni M, Hamzehee M (2016) A P-robust model in humanitarian logistics in a non-neutral political environment. Uncertain Supply Chain Manag 4(4):249–262

    Article  Google Scholar 

  • Fereiduni M, Shahanaghi K (2017) A robust optimization model for distribution and evacuation in the disaster response phase. J Ind Eng Int 13(1):117–141

    Article  Google Scholar 

  • Fisher ML (2004) The lagrangian relaxation method for solving integer programming problems. Manage Sci 50(12 supplement):1861–1871

    Article  Google Scholar 

  • Görmez N, Köksalan M, Salman FS (2011) Locating disaster response facilities in Istanbul. J Operat Res Soc 62(7):1239–1252

    Article  Google Scholar 

  • Gutiérrez GJ, Kouvelis P, Kurawarwala AA (1996) A robustness approach to uncapacitated network design problems. Eur J Oper Res 94(2):362–376

    Article  MATH  Google Scholar 

  • Gutiérrez GJ, Kouvelis P (1995) A robustness approach to international sourcing. Ann Oper Res 59(1):165–193

    Article  MATH  Google Scholar 

  • Hakimi SL (1964) Optimum locations of switching centers and the absolute centers and medians of a graph. Oper Res 12(3):450–459

    Article  MATH  Google Scholar 

  • Hale JQ, Zhou E, Peng J (2017) A lagrangian search method for the p-median problem. J Global Optim 69(1):137–156

    Article  MathSciNet  MATH  Google Scholar 

  • Hamidieh A, Arshadikhamseh A, Fazli-Khalaf M (2018) A robust reliable closed loop supply chain network design under uncertainty: a case study in equipment training centers. Int J Eng 31(4):648–658

    Google Scholar 

  • Hatefi SM, Jolai F (2014) Robust and reliable forward–reverse logistics network design under demand uncertainty and facility disruptions. Appl Math Model 38(9–10):2630–2647

    Article  MathSciNet  MATH  Google Scholar 

  • Hu SL, Han CF, Meng LP (2016) Stochastic optimization for investment in facilities in emergency prevention[J]. Trans Res Part E: Logs & Trans Rev 89:14–31

    Article  Google Scholar 

  • Irawan CA, Salhi S, Scaparra MP (2014) An adaptive multiphase approach for large unconditional and conditional p-median problems. Eur J Oper Res 237(2):590–605

    Article  MathSciNet  MATH  Google Scholar 

  • Jabbarzadeh A, Fahimnia B, Sheu JB (2017) An enhanced robustness approach for managing supply and demand uncertainties. Int J Prod Econ 183:620–631

    Article  Google Scholar 

  • Janković O, Stanimirović Z (2017) A general variable neighborhood search for solving the uncapacitated r-allocation p-hub maximal covering problem. Electron Notes in Discrete Math 5:23–30

    Article  MathSciNet  MATH  Google Scholar 

  • Köbis E (2015) On robust optimization. J Optim Theory Appl 167(3):969–984

    Article  MathSciNet  MATH  Google Scholar 

  • Kouvelis P, Kurawarwala AA, Gutiérrez GJ (1992) Algorithms for robust single and multiple period layout planning for manufacturing systems. Eur J Oper Res 63(2):287–303

    Article  MATH  Google Scholar 

  • Kouvelis P, Yu G (1997) Robust discrete optimization and its applications. Kluwer Academic Publishers, Boston

    Book  MATH  Google Scholar 

  • Lai Z, Wang Z, Ge D, Chen Y (2020) A multi-objective robust optimization model for emergency logistics center location. Operat Res Manag Sci 29(5):74–83 (In Chinese)

    Google Scholar 

  • Li Z, Ding R, Floudas CA (2011) A comparative theoretical and computational study on robust counterpart optimization: i. robust linear optimization and robust mixed integer linear optimization. Ind Eng Chem Res 50(18):10567–10603

    Article  Google Scholar 

  • Li Z, Ierapetritou MG (2008) Robust optimization for process scheduling under uncertainty. Ind Eng Chem Res 47(12):4148–4157

    Article  Google Scholar 

  • Marques MDC, Dias JM (2018) Dynamic location problem under uncertainty with a regret-based measure of robustness. Int Trans Oper Res 25(4):1361–1381

    Article  MathSciNet  MATH  Google Scholar 

  • Mausser HE, Laguna M (1999) Minimising the maximum relative regret for linear programmes with interval objective function coefficients. J Operat Res Soc 50(10):1063–1070

    Article  MATH  Google Scholar 

  • Mula J, Poler R, García-Sabater JP, Lario FC (2006) Models for production planning under uncertainty: a review. Int J Prod Econ 103(1):271–285

    Article  Google Scholar 

  • Omrani H, Adabi F, Adabi N (2017) Designing an efficient supply chain network with uncertain data: a robust optimization—data envelopment analysis approach. J Operat Res Soc 68(7):816–828

    Article  Google Scholar 

  • Peng P, Snyder LV, Lim A, Liu Z (2011) Reliable logistics networks design with facility disruptions. Trans Res Part B: Methodol 45(8):1190–1211

    Article  Google Scholar 

  • Poss M (2017) Robust combinatorial optimization with knapsack uncertainty. Discret Optim 27:88–102

    Article  MathSciNet  MATH  Google Scholar 

  • Rahmaniani R, Ghaderi A, Mahmoudi N, Barzinepour F (2013a) Stochastic p-robust uncapacitated multiple allocation p-hub location problem. Int J Ind Syst Eng 14(3):296–314

    Google Scholar 

  • Rahmaniani R, Saidi-Mehrabad M, Ashouri H (2013b) Robust capacitated facility location problem: Optimization model and solution algorithms. J Uncertain Syst 7(1):22–35

    Google Scholar 

  • Santoso T, Ahmed S, Goetschalckx M, Shapiro A (2005) A stochastic programming approach for supply chain network design under uncertainty. Eur J Oper Res 167(1):96–115

    Article  MathSciNet  MATH  Google Scholar 

  • Seo KK, Chung BD (2014) Robust optimization for identical parallel machine scheduling with uncertain processing time. J Adv Mech Design, Syst Manufact, 8(2), JAMDSM0015-JAMDSM0015

  • Seo KK, Kim J, Chung BD (2015) A minimax p-robust optimization approach for planning under uncertainty. J Adv Mech Design Syst Manufact, 9(5), JAMDSM0067-JAMDSM0067

  • Shafia MA, Rahmaniani M, Rahmaniani R, Rezai A (2012) Robust optimization model for the capacitated facility location and transportation network design problem. In: International Conference on Industrial Engineering and Operations Management, Istanbul.

  • Sheppard ES (1974) A conceptual framework for dynamic location-allocation analysis. Environ Plan A 6(5):547–564

    Article  Google Scholar 

  • Shishebori D, Babadi AY (2015) Robust and reliable medical services network design under uncertain environment and system disruptions. Transp Res Part E 77:268–288

    Article  Google Scholar 

  • Snyder LV, Daskin MS (2006) Stochastic p-robust location problems. IIE Trans 38(11):971–985

    Article  Google Scholar 

  • Snyder LV (2006) Facility location under uncertainty: a review. IIE Trans 38(7):547–564

    Article  Google Scholar 

  • Snyder LV, Daskin MS, Teo CP (2007) The stochastic location model with risk pooling. Eur J Oper Res 179(3):1221–1238

    Article  MATH  Google Scholar 

  • Sörensen K (2008) Investigation of practical, robust and flexible decisions for facility location problems using tabu search and simulation. J Operat Res Soc 59(5):624–636

    Article  MATH  Google Scholar 

  • Soyster AL (1973) Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper Res 21:1154–1157

    Article  MathSciNet  MATH  Google Scholar 

  • Srinivasan S, Khan SH (2018) Multi-stage manufacturing/re-manufacturing facility location and allocation model under uncertain demand and return. Int J Adv Manuf Technol 94:2847–2860

    Article  Google Scholar 

  • Swain RW (1971) A decomposition algorithm for a class of facility location problems. Distance 21(1):A62–A63

    Google Scholar 

  • Swamy C, Shmoys DB (2006) Approximation algorithms for 2-stage stochastic optimization problems. ACM SIGACT News 37(1):33–46

    Article  MATH  Google Scholar 

  • Teitz MB, Bart P (1968) Heuristic methods for estimating the generalized vertex median of a weighted graph. Oper Res 16(5):955–961

    Article  MATH  Google Scholar 

  • Tian J, Yue J (2014) Bounds of relative regret limit in p-robust supply chain network design. Prod Oper Manag 23(10):1811–1831

    Article  Google Scholar 

  • Verderame PM, Floudas CA (2009) Operational planning of large-scale industrial batch plants under demand due date and amount uncertainty. I Robust Optimiz Framework. Ind Eng Chem Res 48(15): 7214–7231

  • Verma A, Gaukler GM (2011) A Stochastic optimization model for positioning disaster response facilities for large scale emergencies. International Conference on Network Optimization. Springer, Berlin, Heidelberg, pp 547–552

    Chapter  Google Scholar 

  • Yuan Y, Li Z, Huang B (2016) Robust optimization under correlated uncertainty: formulations and computational study. Comput Chem Eng 85:58–71

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (41671396), Scientific Research Foundation for PhD of GNNU (BSJJ202116) and Guizhou Theoretical Innovation Joint Project of China (GZLCLH-2020-331, GZLCLH-2021-86).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhizhu Lai or Zheng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, Z., Yue, Q., Wang, Z. et al. The min-p robust optimization approach for facility location problem under uncertainty. J Comb Optim 44, 1134–1160 (2022). https://doi.org/10.1007/s10878-022-00868-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-022-00868-9

Keywords

Navigation