Abstract
A 2-distance vertex-distinguishing edge coloring of a graph G is a proper edge coloring of G such that any pair of vertices at distance 2 have distinct sets of colors. The 2-distance vertex-distinguishing index \(\chi ^{\prime }_{\mathrm{d2}}(G)\) of G is the minimum number of colors needed for a 2-distance vertex-distinguishing edge coloring of G. Some network problems can be converted to the 2-distance vertex-distinguishing edge coloring of graphs. It is proved in this paper that if G is a subcubic graph, then \(\chi ^{\prime }_{\mathrm{d2}}(G)\le 6\). Since the Peterson graph P satisfies \(\chi ^{\prime }_{\mathrm{d2}}(P)=5\), our solution is within one color from optimal.




Similar content being viewed by others
References
Aigner M, Triesch E (1990) Irregular assignments of trees and forests. SIAM J Discrete Math 3:439–449
Akbari S, Bidkhori H, Nosrati N (2006) \(r\)-Strong edge colorings of graphs. Discrete Math 306:3005–3010
Balister PN, Győri E, Lehel J, Schelp RH (2007) Adjacent vertex distinguishing edge-colorings. SIAM J Discrete Math 21:237–250
Balister PN, Bollobás B, Schelpa RH (2002) Vertex distinguishing colorings of graphs with \(\Delta (G)=2\). Discrete Math 252:17–29
Bazgan C, Harkat-Benhamdine A, Li H, Woźniak M (1999) On the vertex-distinguishing proper edge-colorings of graphs. J Comb Theoey Ser B 75:288–301
Bezegová L, Lužar B, Mockovčiaková M, Soták R, Škrekovski R (2016) Star edge coloring of some classes of graphs. J Graph Theory 81:73–82
Brooks LR (1941) On colouring the nodes of a network. Proc Camb Philos Soc 37:194–197
Burris AC (1993) Vertex-distinguishing edge-colorings. Ph.D. Dissertation, Memphis State University
Burris AC, Schelp RH (1997) Vertex-distinguishing proper edge-colorings. J Graph Theory 26:73–83
Dvořák Z, Mohar B, Šámal R (2013) Star chromatic index. J Graph Theory 72:313–326
Hatami H (2005) \(\Delta \)+300 is a bound on the the adjacent vertex distinguishing edge chromatic number. J Comb Theory Ser B 95:246–256
Huang D, Lih KW, Wang W (2015) Legally \((\Delta +2)\)-coloring bipartite outerplanar graphs in cubic time. Comb Optim Appl, 617–632. Lecture Notes in Comput Sci 9486, Springer, Cham, 2015
Petersen J (1891) Die Theorie ser regulären Graphsn. Acta Math 15:193–220
Vučković B (2017) Edge-partitions of graphs and their neighbor-distinguishing index. Discrete Math 340:3092–3096
Wang W, Huang D, Wang Y, Wang Y, Du DZ (2016) A polynomial-time nearly-optimal algorithm for an edge coloring problem in outerplanar graphs. J Glob Optim 65:351–367
Wang W, Wang Y, Huang D, Wang Y (2016) 2-Distance vertex-distinguishing edge coloring of graphs (submitted)
Wang Y, Wang W, Huo J (2015) Some bounds on the neighbor-distinguishing index of graphs. Discrete Math 338:2006–2013
Zhang Z, Li J, Chen X, Cheng H, Yao B (2006) \(D(\beta )\)-vertex-distinguishing proper edge-coloring of graphs. Acta Math Sin (Chin Ser) 49:703–708
Zhang Z, Liu L, Wang J (2002) Adjacent strong edge coloring of graphs. Appl Math Lett 15:623–626
Author information
Authors and Affiliations
Corresponding author
Additional information
Weifan Wang: Research supported by NSFC (No. 11771402);
Min Chen: Research supported by NSFC (Nos. 11471293, 11671053).
Rights and permissions
About this article
Cite this article
Loumngam Kamga, V., Wang, W., Wang, Y. et al. 2-Distance vertex-distinguishing index of subcubic graphs. J Comb Optim 36, 108–120 (2018). https://doi.org/10.1007/s10878-018-0288-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10878-018-0288-4