Edge lifting and total domination in graphs | Journal of Combinatorial Optimization
Skip to main content

Edge lifting and total domination in graphs

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Let u and v be vertices of a graph G, such that the distance between u and v is two and x is a common neighbor of u and v. We define the edge lift of uv off x as the process of removing edges ux and vx while adding the edge uv to G. In this paper, we investigate the effect that edge lifting has on the total domination number of a graph. Among other results, we show that there are no trees for which every possible edge lift decreases the total domination number and that there are no trees for which every possible edge lift leaves the total domination number unchanged. Trees for which every possible edge lift increases the total domination number are characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen X, Sohn MY (2008) A note on the total domination vertex critical graphs. Ars Comb 88:289–294

    MathSciNet  MATH  Google Scholar 

  • Cockayne EJ, Dawes RM, Hedetniemi ST (1980) Total domination in graphs. Networks 10:211–219

    Article  MathSciNet  MATH  Google Scholar 

  • Desormeaux WJ, Hall AJ, Haynes TW, Koessler D, Langston MA, Rickett SA, Scott H (2011a) Edge lifting and domination in graphs. Bull Inst Combin Appl 63:77–86

    MathSciNet  MATH  Google Scholar 

  • Desormeaux WJ, Haynes TW, Henning MA (2011b) Domination edge lift critical trees. Quaest Math 34:1–12

    Article  MathSciNet  Google Scholar 

  • Desormeaux WJ, Haynes TW, Henning MA (2010a) Total domination stable graphs upon edge addition. Discrete Math 310:3446–3454

    Article  MathSciNet  MATH  Google Scholar 

  • Desormeaux WJ, Haynes TW, Henning MA (2010b) Total domination critical and stable graphs upon edge removal. Discrete Appl Math 158:1587–1592

    Article  MathSciNet  MATH  Google Scholar 

  • Goddard W, Haynes TW, Henning MA, van der Merwe LC (2004) The diameter of total domination vertex critical graphs. Discrete Math 286:255–261

    Article  MathSciNet  MATH  Google Scholar 

  • Hanson D, Wang P (2003) A note on extremal total domination edge critical graphs. Util Math 63:89–96

    MathSciNet  MATH  Google Scholar 

  • Haynes TW, Hedetniemi ST, Slater PJ (1998a) Fundamentals of domination in graphs. Dekker, New York

    MATH  Google Scholar 

  • Haynes TW, Hedetniemi ST, Slater PJ (eds) (1998b) Domination in graphs: advanced topics. Dekker, New York

    MATH  Google Scholar 

  • Haynes TW, Henning MA, van der Merwe LC (2001) Domination and total domination critical trees with respect to relative complements. Ars Comb 59:117–127

    MATH  Google Scholar 

  • Haynes TW, Henning MA, van der Merwe LC (2002) Total domination critical graphs with respect to relative complements. Ars Comb 64:169–179

    MATH  Google Scholar 

  • Haynes TW, Mynhardt CM, van der Merwe LC (1998c) Total domination edge critical graphs. Util Math 54:229–240

    MathSciNet  MATH  Google Scholar 

  • Henning MA (2009) Recent results on total domination in graphs: a survey. Discrete Math 309:32–63

    Article  MathSciNet  MATH  Google Scholar 

  • Loizeaux M, van der Merwe LC (2006) A total domination vertex critical graph of diameter two. Bull Inst Comb Appl 48:63–65

    MATH  Google Scholar 

  • Lovász L (1993) Combinatorial problems and exercises, 2nd edn. North-Holland, New York

    MATH  Google Scholar 

  • Lovász L (1974) In: Lecture, conference of graph theory, Prague

    Google Scholar 

  • van der Merwe LC, Haynes TW, Mynhardt CM (1999) 3-domination critical graphs with arbitrary independent domination numbers. Bull Inst Combin Appl 27:85–88

    MathSciNet  MATH  Google Scholar 

  • van der Merwe LC, Haynes TW, Mynhardt CM (2001) Total domination edge critical graphs with maximum diameter. Discuss Math, Graph Theory 21:187–205

    Article  MathSciNet  MATH  Google Scholar 

  • van der Merwe LC, Haynes TW, Mynhardt CM (2003) Total domination edge critical graphs with minimum diameter. Ars Comb 66:79–96

    MATH  Google Scholar 

  • van der Merwe LC (1999) Total domination edge critical graphs. PhD thesis, University of South Africa

  • van der Merwe LC, Loizeaux M (2007) \(4\sb t\)-critical graphs with maximum diameter. J Comb Math Comb Comput 60:65–80

    MATH  Google Scholar 

  • van der Merwe LC, Loizeaux M (2009) Bounds on the order of 4-critical graphs with diameter two. Util Math 78:107–119

    MathSciNet  MATH  Google Scholar 

  • Wang CX, Fei PS (2007) On maximum total domination vertex critical graphs. Math Appl (Wuhan) 20:191–195

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wyatt J. Desormeaux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desormeaux, W.J., Haynes, T.W. & Henning, M.A. Edge lifting and total domination in graphs. J Comb Optim 25, 47–59 (2013). https://doi.org/10.1007/s10878-011-9416-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-011-9416-0

Keywords