Parallel-machine parallel-batching scheduling with family jobs and release dates to minimize makespan | Journal of Combinatorial Optimization Skip to main content
Log in

Parallel-machine parallel-batching scheduling with family jobs and release dates to minimize makespan

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

We consider the scheduling of n family jobs with release dates on m identical parallel batching machines. Each batching machine can process up to b jobs simultaneously as a batch. In the bounded model, b<n, and in the unbounded model, b=∞. Jobs from different families cannot be placed in the same batch. The objective is to minimize the maximum completion time (makespan). When the number of families is a constant, for both bounded model and unbounded model, we present polynomial-time approximation schemes (PTAS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afrati F, Bampis E, Chekuri C, Karger D, Kenyon C, Khanna S, Milis I, Queyranne M, Skutella M, Stein C, Sviridenko M (1999) Approximation schemes for minimizing average weighted completion time with release dates. In: Proceedings of the 40th annual IEEE symposium on foundations of computer science (New York). IEEE Comput Soc, Los Alamitos, pp 32–44

    Google Scholar 

  • Brucker P, Gladky A, Hoogeveen H, Kovalyov MY, Potts CN, Tautenhahn T, van de Velde SL (1998) Scheduling a batching machine. J Sched 1:31–54

    Article  MATH  MathSciNet  Google Scholar 

  • Brucker P (2001) Scheduling algorithms. Springer, Berlin

    MATH  Google Scholar 

  • Brucker P, Knust S (2007) Complexity results for scheduling problem. http://www.mathematik.uniosnabrueck.de/reseach/OR/class/2007

  • Cheng TCE, Liu ZH, Yu WC (2001) Scheduling jobs with release dates and deadlines on a batching processing machine. IIE Trans 33:685–690

    Google Scholar 

  • Deng XT, Poon CK, Zhang YZ (2003) Approximation algorithms in batch processing. J Comb Optim 7:247–257

    Article  MATH  MathSciNet  Google Scholar 

  • Deng XT, Zhang YZ (1999) Minimizing mean response time for batch processing systems. Lect Notes Comput Sci 1627:231–240

    Article  MathSciNet  Google Scholar 

  • Graham RL (1969) Bounds on multiprocessor timing anomalies. SIAM J Appl Math 17:416–429

    Article  MATH  MathSciNet  Google Scholar 

  • Hall LA, Shmoys DB (1989) Approximation schemes of constrained scheduling problems. In: Proceedings of the 30th annual IEEE symposium on foundations of computer science, pp 134–139

  • Lee CY, Uzsoy R, Martin-Vega LA (1992) Efficient algorithms for scheduling semi-conductor burn-in operations. Oper Res 40:764–775

    Article  MATH  MathSciNet  Google Scholar 

  • Lee CY, Uzsoy R (1999) Minimizing makespan on a single batch processing machine with dynamic job arrivals. Int J Prod Res 37:219–236

    Article  MATH  Google Scholar 

  • Li SG, Li GJ, Zhang SQ (2005) Minimizing makespan with release times on identical parallel batching machines. Discrete Appl Math 148:127–134

    Article  MATH  MathSciNet  Google Scholar 

  • Liu ZH, Yu WC (2000) Scheduling one batch processor subject to job release dates. Discrete Appl Math 105:129–136

    Article  MATH  MathSciNet  Google Scholar 

  • Liu ZH, Yuan JJ, Cheng TCE (2003) On scheduling an unbounded batch machine. Oper Res Lett 31:42–48

    Article  MATH  MathSciNet  Google Scholar 

  • Nong QQ, Ng CT, Cheng TCE (2008) The bounded single-machine parallel-batching scheduling problem with family jobs and release dates to minimize makespan. Oper Res Lett 111:435–440

    Google Scholar 

  • Yuan JJ, Liu ZH, Ng CT, Cheng TCE (2004) The unbounded single machine parallel batch scheduling problem with family jobs and release dates to minimize makespan. Theor Comput Sci 320:199–212

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinjiang Yuan.

Additional information

Research supported by NSFC (10671183), NFSC-RGC (70731160633) and SRFDP (20070459002).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Yuan, J. Parallel-machine parallel-batching scheduling with family jobs and release dates to minimize makespan. J Comb Optim 19, 84–93 (2010). https://doi.org/10.1007/s10878-008-9163-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-008-9163-z

Keywords

Navigation