Screen-printed flexible temperature sensor based on FG/CNT/PDMS composite with constant TCR | Journal of Materials Science: Materials in Electronics Skip to main content
Log in

Screen-printed flexible temperature sensor based on FG/CNT/PDMS composite with constant TCR

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work present the fabrication and characterization of a flexible temperature sensor based on the flake graphite (FG)/carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite. The sensor shows high temperature sensitivity and good linearity. The FG/CNT/PDMS temperature-sensitive films are prepared by the screen printing process. Superior printability of the FG/CNT/PDMS inks is demonstrated by means of rheology. Field emission scanning electron microscope investigation reveals an interpenetrating network structures between the FG and CNT. Moreover, thermal gravity analysis illustrates that the FG/CNT/PDMS temperature-sensitive films have a better thermal stability than that of PDMS blank control film. The temperature-dependent resistance behavior suggests that the temperature coefficient of resistance (TCR) value of the FG/CNT/PDMS films can be manipulated by the mass ratio of FG to CNT. When the mass ratio of FG to CNT is 4:1, the TCR is almost reproducible and maintained at the same level of 0.028 K−1 for repeated thermal cycles. These results indicate that the developed FG/CNT/PDMS composite has potential applications for the flexible temperature sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Atzori, A. Iera, G. Morabito, The internet of things: a survey. Comput. Netw. 54, 2787–2805 (2010)

    Article  Google Scholar 

  2. S. Harada, K. Kanao, Y. Yamamoto, T. Arie, S. Akita, K. Takei, Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin. ACS Nano 8, 12851–12857 (2014)

    Article  Google Scholar 

  3. S.G. Yoon, S.T. Chang, Microfluidic capacitive sensors with ionic liquid electrodes and CNT/PDMS nanocomposites for simultaneous sensing of pressure and temperature. J. Mater. Chem. C 5, 1910–1919 (2017)

    Article  Google Scholar 

  4. G. Rosace, V. Trovato, C. Colleoni, M. Caldara, V. Re, M. Brucale, M.R. Plutino, Structural and morphological characterizations of MWCNTs hybrid coating onto cotton fabric as potential humidity and temperature wearable sensor. Sens. Actuators B. Chem. 252, 428–439 (2017)

    Article  Google Scholar 

  5. W. Honda, S. Harada, T. Arie, S. Akita, K. Takei, Wearable, human-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques. Adv. Func. Mater. 24, 3299–3304 (2014)

    Article  Google Scholar 

  6. G. Yang, R. Teng, P. Xiao, Electrical properties of crosslinked polyethylene/carbon black switching composites as a function of morphology and structure of the carbon black. Polym. Compos. 18, 477–483 (1997)

    Article  Google Scholar 

  7. S.H. Foulger, Reduced percolation thresholds of immiscible conductive blends. J. Polym. Sci. Pol. Phys. 37, 1899–1910 (1999)

    Article  Google Scholar 

  8. G.J. Lee, K.D. Suh, S.S. Im, Study of electrical phenomena in carbon black-filled HDPE composite. Polym. Eng. Sci. 38, 471–477 (1998)

    Article  Google Scholar 

  9. Z. Zheng, W. Li, H. Sun, Z. Cheng, J. Yan, H. Wang, X. Cui, Preparation and characterization of polystyrene/modified carbon black composite beads via in situ suspension polymerization. Polym. Compos. 34, 1110–1118 (2013)

    Article  Google Scholar 

  10. C.S. Park, K.I. Joo, S.W. Kang, H.R. Kim, A PDMS-coated optical fiber Bragg grating sensor for enhancing temperature sensitivity. J. Opt. Soc. Korea 15, 329–334 (2011)

    Article  Google Scholar 

  11. J.M. Engel, J. Chen, D. Bullen, C. Liu, Polyurethane Rubber as a MEMS Material: Characterization and Demonstration of an All-Polymer Two-Axis Artificial Hair Cell Flow Sensor, in 18th IEEE International Conference on Micro Electro Mechanical Systems, vol. 2005 (IEEE, Miami Beach, FL, USA, 2005), pp. 279–282. https://doi.org/10.1109/memsys.2005.1453921

  12. K.S. Lim, W.J. Chang, Y.M. Koo, R. Bashir, Reliable fabrication method of transferable micron scale metal pattern for poly (dimethylsiloxane) metallization. Lab Chip 6, 578–580 (2006)

    Article  Google Scholar 

  13. X.Z. Niu, S.L. Peng, L.Y. Liu, W.J. Wen, P. Sheng, Characterizing and patterning of PDMS-based conducting composites. Adv. Mater. 19, 2682–2686 (2007)

    Article  Google Scholar 

  14. L.C. Tsao, M.Y. Cheng, I.L. Chen, W.P. Shih, Y.J. Yang, F.Y. Chang, S.H. Chang, Flexible Temperature Sensor Array Using Electro-Resistive Polymer Forhumanoid Artificial Skin, in TRANSDUCERS 20072007 International Solid-State Sensors, Actuators and Microsystems Conference, vol. 1 (IEEE, Lyon, France, 2007), pp. 2287–2290. https://doi.org/10.1109/sensor.2007.4300626

  15. W.P. Shih, L.C. Tsao, C.W. Lee, M.Y. Cheng, C. Chang, Y.J. Yang, K.C. Fan, Flexible temperature sensor array based on a graphite-polydimethylsiloxane composite. Sensors (Basel) 10, 3597–3610 (2010)

    Article  Google Scholar 

  16. C. Bali, A. Brandlmaier, A. Ganster, O. Raab, J. Zapf, A. Hübler, Fully inkjet-printed flexible temperature sensors based on carbon and PEDOT: PSS1. Mater. Today Proc. 3, 739–745 (2016)

    Article  Google Scholar 

  17. B. Davaji, H.D. Cho, M. Malakoutian, J.K. Lee, G. Panin, T.W. Kang, C.H. Lee, A patterned single layer graphene resistance temperature sensor. Sci. Rep. 7, 8811 (2017)

    Article  Google Scholar 

  18. T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, T. Sakurai, Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. P. Natl. Acad. Sci. USA 102, 12321–12325 (2005)

    Article  Google Scholar 

  19. J. Jeon, H.B.R. Lee, Z. Bao, Flexible wireless temperature sensors based on Ni microparticle-filled binary polymer composites. Adv. Mater. 25, 850–855 (2013)

    Article  Google Scholar 

  20. C. Phillips, A. Al-Ahmadi, S.J. Potts, T. Claypole, D. Deganello, The effect of graphite and carbon black ratios on conductive ink performance. J. Mater. Sci. 52, 9520–9530 (2017)

    Article  Google Scholar 

  21. K.T.S. Kong, M. Mariatti, A.A. Rashid, J.J.C. Busfield, Enhanced conductivity behavior of polydimethylsiloxane (PDMS) hybrid composites containing exfoliated graphite nanoplatelets and carbon nanotubes. Composites B 58, 457–462 (2014)

    Article  Google Scholar 

  22. S.Y. Yang, W.N. Lin, Y.L. Huang, H.W. Tien, J.Y. Wang, C.C.M. Ma, S.M. Li, Y.S. Wang, Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 49, 793–803 (2011)

    Article  Google Scholar 

  23. S. Kumar, L.L. Sun, S. Caceres, B. Li, W. Wood, A. Perugini, R.G. Maguire, W.H. Zhong, Dynamic synergy of graphitic nanoplatelets and multi-walled carbon nanotubes in polyetherimide nanocomposites. Nanotechnology 21, 105702 (2010)

    Article  Google Scholar 

  24. M. Norkhairunnisa, A. Azizan, M. Mariatti, H. Ismail, L.C. Sim, Thermal stability and electrical behavior of polydimethylsiloxane nanocomposites with carbon nanotubes and carbon black fillers. J. Mater. Sci. 46(8), 903–910 (2012)

    Google Scholar 

  25. J.Y. Oh, G.H. Jun, S. Jin, H.J. Ryu, S.H. Hong, Enhanced electrical networks of stretchable conductors with small fraction of carbon nanotube/graphene hybrid fillers. ACS Appl. Mater. Interfaces 8, 3319–3325 (2016)

    Article  Google Scholar 

  26. Y.H. Zhao, Y.F. Zhang, Z.K. Wu, S.L. Bai, Synergic enhancement of thermal properties of polymer composites by graphene foam and carbon black. Composites B 84, 52–58 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully appreciate financial support offered by the National Natural Science Foundation of China (Grant Nos. 51371129 and 11174226).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangli Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Qian, J., Peng, J. et al. Screen-printed flexible temperature sensor based on FG/CNT/PDMS composite with constant TCR. J Mater Sci: Mater Electron 30, 9593–9601 (2019). https://doi.org/10.1007/s10854-019-01293-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01293-1

Navigation