Poly(vinylidene fluoride-trifluoroethylene)/cobalt ferrite composite films with a self-biased magnetoelectric effect for flexible AC magnetic sensors | Journal of Materials Science Skip to main content
Log in

Poly(vinylidene fluoride-trifluoroethylene)/cobalt ferrite composite films with a self-biased magnetoelectric effect for flexible AC magnetic sensors

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

With the rapid development of artificial intelligence and wearable devices, flexible magnetic sensors have attracted much attention in recent years. In this work, large self-biased 0–3 type poly(vinylidene fluoride-trifluoroethylene)/cobalt ferrite (P(VDF-TrFE)/CoFe2O4) flexible magnetoelectric (ME) composite films are proposed for the development of AC magnetic sensors. P(VDF-TrFE)/CoFe2O4 composite films with CoFe2O4 nanoparticle mass contents from 5 to 30% are successfully fabricated through the solution casting method. The results show that the nanoparticles are homogeneously dispersed in the P(VDF-TrFE) matrix, and the composite films have both excellent ferroelectric and ferromagnetic properties. The P(VDF-TrFE)/CoFe2O4 composite films all exhibit a large ME effect. The ME coefficient reaches 47.1 mV·cm−1·Oe−1 for the film with a CoFe2O4 nanoparticle mass content of 20% at resonance frequency. Moreover, the composite films have a large self-biased ME effect with a maximum value of 20.4 mV·cm−1·Oe−1, which is mainly due to the high remnant magnetization of CoFe2O4 nanoparticles. To evaluate the composite films for application in magnetic sensors, the response of the ME output voltage to an AC magnetic field without a bias DC magnetic field was measured. The good linear correlation coefficient, sensitivity and repeatability indicate that the proposed 0–3 type P(VDF-TrFE)/CoFe2O4 composite film is a promising material for flexible AC magnetic sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Rogers JA (2017) Wearable electronics nanomesh on-skin electronics. Nat Nanotechnol 12(9):839–840. https://doi.org/10.1038/nnano.2017.150

    Article  CAS  Google Scholar 

  2. Hatamie A, Angizi S, Kumar S, Pandey CM, Simchi A, Willander M, Malhotra BD (2020) Review-textile based chemical and physical sensors for healthcare monitoring. J Electrochem Soc 167(3):14. https://doi.org/10.1149/1945-7111/ab6827

    Article  CAS  Google Scholar 

  3. Mukhopadhyay SC (2015) Wearable sensors for human activity monitoring: a review. IEEE Sens J 15(3):1321–1330. https://doi.org/10.1109/JSEN.2014.2370945

    Article  Google Scholar 

  4. Muzammal M, Talat R, Sodhro AH, Pirbhulal S (2020) A multi-sensor data fusion enabled ensemble approach for medical data from body sensor networks. Inf Fusion 53:155–164. https://doi.org/10.1016/j.inffus.2019.06.021

    Article  Google Scholar 

  5. Yang JC, Mun J, Kwon SY, Park S, Bao ZN, Park S (2019) Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv Mater 31(48):50. https://doi.org/10.1002/adma.201904765

    Article  CAS  Google Scholar 

  6. Shin KY, Lee JS, Jang J (2016) Highly sensitive, wearable and wireless pressure sensor using free-standing ZnO nanoneedle/PVDF hybrid thin film for heart rate monitoring. Nano Energy 22:95–104. https://doi.org/10.1016/j.nanoen.2016.02.012

    Article  CAS  Google Scholar 

  7. Choi S, Jiang ZW (2006) A novel wearable sensor device with conductive fabric and PVDF film for monitoring cardiorespiratory signals. Sens Actuator A Phys 128(2):317–326. https://doi.org/10.1016/j.sna.2006.02.012

    Article  CAS  Google Scholar 

  8. Kweon OY, Lee SJ, Oh JH (2018) Wearable high-performance pressure sensors based on three-dimensional electrospun conductive nanofibers. NPG Asia Mater 10:12. https://doi.org/10.1038/s41427-018-0041-6

    Article  CAS  Google Scholar 

  9. Xue H, Yang Q, Wang DY, Luo WJ, Wang WQ, Lin MS, Liang DL, Luo QM (2017) A wearable pyroelectric nanogenerator and self-powered breathing sensor. Nano Energy 38:147–154. https://doi.org/10.1016/j.nanoen.2017.05.056

    Article  CAS  Google Scholar 

  10. Huang T, Wang C, Yu H, Wang HZ, Zhang QH, Zhu MF (2015) Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy 14:226–235. https://doi.org/10.1016/j.nanoen.2015.01.038

    Article  CAS  Google Scholar 

  11. Mokhtari F, Shamshirsaz M, Latifi M, Foroughi J (2020) Nanofibers-based piezoelectric energy harvester for self-powered wearable technologies. Polymers. https://doi.org/10.3390/polym12112697

    Article  Google Scholar 

  12. Wang ZG, Wang XJ, Li MH, Gao Y, Hu ZQ, Nan TX, Liang XF, Chen HH, Yang J, Cash S, Sun NX (2016) Highly sensitive flexible magnetic sensor based on anisotropic magnetoresistance effect. Adv Mater 28(42):9370. https://doi.org/10.1002/adma.201602910

    Article  CAS  Google Scholar 

  13. Zhai J, Cai N, Shi Z, Lin Y, Nan CW (2004) Magnetic-dielectric properties of NiFe2O4/PZT particulate composites. J Phys D Appl Phys 37(6):823–823. https://doi.org/10.1088/0022-3727/37/6/002

    Article  CAS  Google Scholar 

  14. Fiebig M (2005) Revival of the magnetoelectric effect. J Phys D Appl Phys 38(8):R123–R152. https://doi.org/10.1002/chin.200533283

    Article  CAS  Google Scholar 

  15. Vaz CAF, Hoffman J, Ahn CH, Ramesh R (2010) Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv Mater 22(26–27):2900–2918. https://doi.org/10.1002/adma.200904326

    Article  CAS  Google Scholar 

  16. Nan CW, Bichurin MI, Dong SX, Viehland D, Srinivasan G (2008) Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J Appl Phys 103(3):35. https://doi.org/10.1063/1.2836410

    Article  CAS  Google Scholar 

  17. Shi M, Zuo RZ, Xu YD, Wang L, Gu C, Su HL, Zhong JG, Yu GY (2014) Preparation and multiferroic properties of 2–2 type CoFe2O4/Pb(Zr, Ti)0–3 composite films with different structures. Ceram Int 40(7):9249–9256. https://doi.org/10.1016/j.ceramint.2014.01.146

    Article  CAS  Google Scholar 

  18. Martins P, Moya X, Phillips LC, Kar-Narayan S, Mathur ND, Lanceros-Mendez S (2011) Linear anhysteretic direct magnetoelectric effect in Ni0.5Zn0.5Fe2O4/poly(vinylidene fluoride-trifluoroethylene) 0–3 nanocomposites. J Phys D Appl Phys. https://doi.org/10.1088/0022-3727/44/48/482001

    Article  Google Scholar 

  19. Bai YL, Jiang N, Zhao SF (2018) Giant magnetoelectric effects in pseudo 1–3 heterostructure films with FeGa nanocluster-assembled micron-scale discs embedded into Bi5Ti3FeO15 matrices. Nanoscale 10(21):9816–9821. https://doi.org/10.1039/C7NR09652F

    Article  CAS  Google Scholar 

  20. Chakraborty S, Mandal SK, Saha B (2019) Magneto-optic and magneto-electric effects in poly(vinylidene fluoride)-Zn0.2Co0.8Fe2O4 nanocomposite organic flexible film. Ceram Int 45(12):14851–14858. https://doi.org/10.1016/j.ceramint.2019.04.216

    Article  CAS  Google Scholar 

  21. Martins P, Larrea A, Goncalves R, Botelho G, Ramana EV, Mendiratta SK, Sebastian V, Lanceros-Mendez S (2015) Novel anisotropic magnetoelectric effect on delta-FeO(OH)/P(VDF-TrFE) multiferroic composites. ACS Appl Mater Interfaces 7(21):11224–11229. https://doi.org/10.1021/acsami.5b01196

    Article  CAS  Google Scholar 

  22. Choi MH, Yang SC (2018) CoFe2O4 nanofiller effect on beta-phase formation of PVDF matrix for polymer-based magnetoelectric composites. Mater Lett 223:73–77. https://doi.org/10.1016/j.matlet.2018.04.024

    Article  CAS  Google Scholar 

  23. Divya S, Hemalatha J (2017) Study on the enhancement of ferroelectric beta phase in P(VDF-HFP) films under heating and poling conditions. Eur Polym J 88:136–147. https://doi.org/10.1016/j.eurpolymj.2017.01.016

    Article  CAS  Google Scholar 

  24. Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39(4):683–706. https://doi.org/10.1016/j.progpolymsci.2013.07.006

    Article  CAS  Google Scholar 

  25. Guan MJ, Mu XJ, Zhang H, Zhang Y, Xu J, Li Q, Wang X, Cao DR, Li SD (2019) Spindle-like Fe3O4 nanoparticles for improving sensitivity and repeatability of giant magnetoresistance biosensors. J Appl Phys 126(6):6. https://doi.org/10.1063/1.5096345

    Article  CAS  Google Scholar 

  26. Jia Z, Misra RDK (2011) Micromagnetic modelling of new generation of FePt and FeRh nanostructures for heat assisted magnetic recording. Mater Technol 26(4):200–205. https://doi.org/10.1179/175355511X13109965351112

    Article  CAS  Google Scholar 

  27. Rana S, Gallo A, Srivastava RS, Misra RDK (2007) On the suitability of nanocrystalline ferrites as a magnetic carrier for drug delivery: functionalization, conjugation and drug release kinetics. Acta Biomater 3(2):233–242. https://doi.org/10.1016/j.actbio.2006.10.006

    Article  CAS  Google Scholar 

  28. Adhlakha N, Yadav KL, Singh R (2014) Effect of BaTiO3 addition on structural, multiferroic and magneto-dielectric properties of 0.3CoFe2O4–0.7BiFeO3 ceramics. Smart Mater Struct 23(10):16. https://doi.org/10.1088/0964-1726/23/10/105024

    Article  CAS  Google Scholar 

  29. Zhang JX, Dai JY, So LC, Sun CL, Lo CY, Or SW, Chan HLW (2009) The effect of magnetic nanoparticles on the morphology, ferroelectric, and magnetoelectric behaviors of CFO/P(VDF-TrFE) 0–3 nanocomposites. J Appl Phys 105(5):6. https://doi.org/10.1063/1.3078111

    Article  CAS  Google Scholar 

  30. Martins P, Lasheras A, Gutierrez J, Barandiaran JM, Orue I, Lanceros-Mendez S (2011) Optimizing piezoelectric and magnetoelectric responses on CoFe2O4/P(VDF-TrFE) nanocomposites. J Phys D Appl Phys. https://doi.org/10.1088/0022-3727/44/49/495303

    Article  Google Scholar 

  31. Behera C, Choudhary RNP, Das PR (2017) Development of Multiferroism in PVDF with CoFe2O4 Nanoparticles. J Polym Res 24(4):13. https://doi.org/10.1007/s10965-017-1208-5

    Article  CAS  Google Scholar 

  32. Martins P, Goncalves R, Lanceros-Mendez S, Lasheras A, Gutierrez J, Barandiaran JM (2014) Effect of filler dispersion and dispersion method on the piezoelectric and magnetoelectric response of CoFe2O4/P(VDF-TrFE) nanocomposites. Appl Surf Sci 313:215–219. https://doi.org/10.1016/j.apsusc.2014.05.187

    Article  CAS  Google Scholar 

  33. Zhang JM, He XZ, Chen XY, Wu YJ, Dong LQ, Cheng K, Lin J, Wang HM, Weng WJ (2020) Enhancing osteogenic differentiation of BMSCs on high magnetoelectric response films. Mater Sci Eng C Mater Biol Appl 113:10. https://doi.org/10.1016/j.msec.2020.110970

    Article  CAS  Google Scholar 

  34. Deng H, Li XL, Peng Q, Wang X, Chen JP, Li YD (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Edit 44(18):2782–2785. https://doi.org/10.1002/anie.200462551

    Article  CAS  Google Scholar 

  35. Zhou Z, Zhang Z, Zhang QL, Yang H, Zhu YL, Wang YY, Chen L (2020) Controllable core-shell BaTiO3@carbon nanoparticle-enabled P(VDF-TrFE) composites: a cost-effective approach to high-performance piezoelectric nanogenerators. ACS Appl Mater Interfaces 12(1):1567–1576. https://doi.org/10.1021/acsami.9b18780

    Article  CAS  Google Scholar 

  36. Tiwary S, Kuila S, Sahoo MR, Barik A, Ghosh IR, Babu PD, Deshpande U, Vishwakarma PN (2020) La2NiMnO6/poly(vinylidene fluoride) nanocomposites with enhanced magnetoelectric voltage. J Appl Phys 127(13):9. https://doi.org/10.1063/1.5140710

    Article  CAS  Google Scholar 

  37. Gregorio R, Cestari M (1994) Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). J Polym Sci Pt B Polym Phys 32(5):859–870. https://doi.org/10.1002/polb.1994.090320509

    Article  CAS  Google Scholar 

  38. Prabhakaran T, Hemalatha J (2016) Magnetoelectric investigations on poly(vinylidene fluoride)/NiFe2O4 flexible films fabricated through a solution casting method. RSC Adv 6(90):86880–86888. https://doi.org/10.1039/C6RA18032A

    Article  CAS  Google Scholar 

  39. Martins P, Costa CM, Lanceros-Mendez S (2011) Nucleation of electroactive beta-phase poly(vinilidene fluoride) with CoFe2O4 and NiFe2O4 nanofillers: a new method for the preparation of multiferroic nanocomposites. Appl Phys A Mater Sci Process 103(1):233–237. https://doi.org/10.1007/s00339-010-6003-7

    Article  CAS  Google Scholar 

  40. Liu X, Liu S, Han M-G, Zhao L, Deng H, Li J, Zhu Y, Krusin-Elbaum L, O’Brien S (2013) Magnetoelectricity in CoFe2O4 nanocrystal-P(VDF-HFP) thin films. Nanoscale Res Lett 8(1):374. https://doi.org/10.1186/1556-276X-8-374

    Article  CAS  Google Scholar 

  41. Goncalves R, Martins P, Correia DM, Sencadas V, Vilas JL, Leon LM, Botelho G, Lanceros-Mendez S (2015) Development of magnetoelectric CoFe2O4/poly(vinylidene fluoride) microspheres. RSC Adv 5(45):35852–35857. https://doi.org/10.1039/c5ra04409j

    Article  CAS  Google Scholar 

  42. Martins P, Kolen’ko YV, Rivas J, Lanceros-Mendez S (2015) Tailored magnetic and magnetoelectric responses of polymer-based composites. ACS Appl Mater Interfaces 7(27):15017–15022. https://doi.org/10.1021/acsami.5b04102

    Article  CAS  Google Scholar 

  43. Waldron RD (1955) Infrared spectra of ferrites. Phys Rev 99(6):1727–1735. https://doi.org/10.1103/physrev.99.1727

    Article  CAS  Google Scholar 

  44. Qi B, Zhang YD, Yao TP (2020) magnetic field sensing based on magnetoelectric coupling of ampere force effect with piezoelectric effect in Silver/Poly(Vinylidine Fluoride)/Silver Laminated Composite. IEEE Access 8:68049–68056. https://doi.org/10.1109/ACCESS.2020.2986174

    Article  Google Scholar 

  45. Kusuma DY, Nguyen CA, Lee PS (2010) Enhanced ferroelectric switching characteristics of P(VDF-TrFE) for organic memory devices. J Phys Chem B 114(42):13289–13293. https://doi.org/10.1021/jp105249f

    Article  CAS  Google Scholar 

  46. Prabhakaran T, Hemalatha J (2016) Combustion synthesis and characterization of cobalt ferrite nanoparticles. Ceram Int 42(12):14113–14120. https://doi.org/10.1016/j.ceramint.2016.06.025

    Article  CAS  Google Scholar 

  47. Martins P, Nunes JS, Oliveira J, Perinka N, Lanceros-Mendez S (2020) Spray-printed magnetoelectric multifunctional composites. Compos Pt B Eng 187:6. https://doi.org/10.1016/j.compositesb.2020.107829

    Article  CAS  Google Scholar 

  48. Jing WQ, Fang F (2017) A flexible multiferroic composite with high self-biased magnetoelectric coupling. Compos Sci Technol 153:145–150. https://doi.org/10.1016/j.compscitech.2017.10.010

    Article  CAS  Google Scholar 

  49. Gupta A, Chatterjee R (2009) Magnetic, dielectric, magnetoelectric, and microstructural studies demonstrating improved magnetoelectric sensitivity in three-phase BaTiO3-CoFe2O4-poly(vinylidene-fluoride) composite. J Appl Phys. https://doi.org/10.1063/1.3181061

    Article  Google Scholar 

  50. Durgaprasad P, Hemalatha J (2018) Magnetoelectric investigations on poly (vinylidene fluoride)/CoFe2O4 flexible electrospun membranes. J Magn Magn Mater 448:94–99. https://doi.org/10.1016/j.jmmm.2017.08.063

    Article  CAS  Google Scholar 

  51. Prasad PD, Hemalatha J (2019) Dielectric and energy storage density studies in electrospun fiber mats of polyvinylidene fluoride (PVDF)/zinc ferrite (ZnFe2O4) multiferroic composite. Phys B 573:1–6. https://doi.org/10.1016/j.physb.2019.08.023

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NNSFC) with Grant Nos. 11604172, 11674187, and 51871127.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Xu or Shandong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: Gregory Rutledge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, X., Zhang, H., Zhang, C. et al. Poly(vinylidene fluoride-trifluoroethylene)/cobalt ferrite composite films with a self-biased magnetoelectric effect for flexible AC magnetic sensors. J Mater Sci 56, 9728–9740 (2021). https://doi.org/10.1007/s10853-021-05937-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05937-8

Navigation