Abstract
With the rapid development of artificial intelligence and wearable devices, flexible magnetic sensors have attracted much attention in recent years. In this work, large self-biased 0–3 type poly(vinylidene fluoride-trifluoroethylene)/cobalt ferrite (P(VDF-TrFE)/CoFe2O4) flexible magnetoelectric (ME) composite films are proposed for the development of AC magnetic sensors. P(VDF-TrFE)/CoFe2O4 composite films with CoFe2O4 nanoparticle mass contents from 5 to 30% are successfully fabricated through the solution casting method. The results show that the nanoparticles are homogeneously dispersed in the P(VDF-TrFE) matrix, and the composite films have both excellent ferroelectric and ferromagnetic properties. The P(VDF-TrFE)/CoFe2O4 composite films all exhibit a large ME effect. The ME coefficient reaches 47.1 mV·cm−1·Oe−1 for the film with a CoFe2O4 nanoparticle mass content of 20% at resonance frequency. Moreover, the composite films have a large self-biased ME effect with a maximum value of 20.4 mV·cm−1·Oe−1, which is mainly due to the high remnant magnetization of CoFe2O4 nanoparticles. To evaluate the composite films for application in magnetic sensors, the response of the ME output voltage to an AC magnetic field without a bias DC magnetic field was measured. The good linear correlation coefficient, sensitivity and repeatability indicate that the proposed 0–3 type P(VDF-TrFE)/CoFe2O4 composite film is a promising material for flexible AC magnetic sensors.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Rogers JA (2017) Wearable electronics nanomesh on-skin electronics. Nat Nanotechnol 12(9):839–840. https://doi.org/10.1038/nnano.2017.150
Hatamie A, Angizi S, Kumar S, Pandey CM, Simchi A, Willander M, Malhotra BD (2020) Review-textile based chemical and physical sensors for healthcare monitoring. J Electrochem Soc 167(3):14. https://doi.org/10.1149/1945-7111/ab6827
Mukhopadhyay SC (2015) Wearable sensors for human activity monitoring: a review. IEEE Sens J 15(3):1321–1330. https://doi.org/10.1109/JSEN.2014.2370945
Muzammal M, Talat R, Sodhro AH, Pirbhulal S (2020) A multi-sensor data fusion enabled ensemble approach for medical data from body sensor networks. Inf Fusion 53:155–164. https://doi.org/10.1016/j.inffus.2019.06.021
Yang JC, Mun J, Kwon SY, Park S, Bao ZN, Park S (2019) Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv Mater 31(48):50. https://doi.org/10.1002/adma.201904765
Shin KY, Lee JS, Jang J (2016) Highly sensitive, wearable and wireless pressure sensor using free-standing ZnO nanoneedle/PVDF hybrid thin film for heart rate monitoring. Nano Energy 22:95–104. https://doi.org/10.1016/j.nanoen.2016.02.012
Choi S, Jiang ZW (2006) A novel wearable sensor device with conductive fabric and PVDF film for monitoring cardiorespiratory signals. Sens Actuator A Phys 128(2):317–326. https://doi.org/10.1016/j.sna.2006.02.012
Kweon OY, Lee SJ, Oh JH (2018) Wearable high-performance pressure sensors based on three-dimensional electrospun conductive nanofibers. NPG Asia Mater 10:12. https://doi.org/10.1038/s41427-018-0041-6
Xue H, Yang Q, Wang DY, Luo WJ, Wang WQ, Lin MS, Liang DL, Luo QM (2017) A wearable pyroelectric nanogenerator and self-powered breathing sensor. Nano Energy 38:147–154. https://doi.org/10.1016/j.nanoen.2017.05.056
Huang T, Wang C, Yu H, Wang HZ, Zhang QH, Zhu MF (2015) Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy 14:226–235. https://doi.org/10.1016/j.nanoen.2015.01.038
Mokhtari F, Shamshirsaz M, Latifi M, Foroughi J (2020) Nanofibers-based piezoelectric energy harvester for self-powered wearable technologies. Polymers. https://doi.org/10.3390/polym12112697
Wang ZG, Wang XJ, Li MH, Gao Y, Hu ZQ, Nan TX, Liang XF, Chen HH, Yang J, Cash S, Sun NX (2016) Highly sensitive flexible magnetic sensor based on anisotropic magnetoresistance effect. Adv Mater 28(42):9370. https://doi.org/10.1002/adma.201602910
Zhai J, Cai N, Shi Z, Lin Y, Nan CW (2004) Magnetic-dielectric properties of NiFe2O4/PZT particulate composites. J Phys D Appl Phys 37(6):823–823. https://doi.org/10.1088/0022-3727/37/6/002
Fiebig M (2005) Revival of the magnetoelectric effect. J Phys D Appl Phys 38(8):R123–R152. https://doi.org/10.1002/chin.200533283
Vaz CAF, Hoffman J, Ahn CH, Ramesh R (2010) Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv Mater 22(26–27):2900–2918. https://doi.org/10.1002/adma.200904326
Nan CW, Bichurin MI, Dong SX, Viehland D, Srinivasan G (2008) Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J Appl Phys 103(3):35. https://doi.org/10.1063/1.2836410
Shi M, Zuo RZ, Xu YD, Wang L, Gu C, Su HL, Zhong JG, Yu GY (2014) Preparation and multiferroic properties of 2–2 type CoFe2O4/Pb(Zr, Ti)0–3 composite films with different structures. Ceram Int 40(7):9249–9256. https://doi.org/10.1016/j.ceramint.2014.01.146
Martins P, Moya X, Phillips LC, Kar-Narayan S, Mathur ND, Lanceros-Mendez S (2011) Linear anhysteretic direct magnetoelectric effect in Ni0.5Zn0.5Fe2O4/poly(vinylidene fluoride-trifluoroethylene) 0–3 nanocomposites. J Phys D Appl Phys. https://doi.org/10.1088/0022-3727/44/48/482001
Bai YL, Jiang N, Zhao SF (2018) Giant magnetoelectric effects in pseudo 1–3 heterostructure films with FeGa nanocluster-assembled micron-scale discs embedded into Bi5Ti3FeO15 matrices. Nanoscale 10(21):9816–9821. https://doi.org/10.1039/C7NR09652F
Chakraborty S, Mandal SK, Saha B (2019) Magneto-optic and magneto-electric effects in poly(vinylidene fluoride)-Zn0.2Co0.8Fe2O4 nanocomposite organic flexible film. Ceram Int 45(12):14851–14858. https://doi.org/10.1016/j.ceramint.2019.04.216
Martins P, Larrea A, Goncalves R, Botelho G, Ramana EV, Mendiratta SK, Sebastian V, Lanceros-Mendez S (2015) Novel anisotropic magnetoelectric effect on delta-FeO(OH)/P(VDF-TrFE) multiferroic composites. ACS Appl Mater Interfaces 7(21):11224–11229. https://doi.org/10.1021/acsami.5b01196
Choi MH, Yang SC (2018) CoFe2O4 nanofiller effect on beta-phase formation of PVDF matrix for polymer-based magnetoelectric composites. Mater Lett 223:73–77. https://doi.org/10.1016/j.matlet.2018.04.024
Divya S, Hemalatha J (2017) Study on the enhancement of ferroelectric beta phase in P(VDF-HFP) films under heating and poling conditions. Eur Polym J 88:136–147. https://doi.org/10.1016/j.eurpolymj.2017.01.016
Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39(4):683–706. https://doi.org/10.1016/j.progpolymsci.2013.07.006
Guan MJ, Mu XJ, Zhang H, Zhang Y, Xu J, Li Q, Wang X, Cao DR, Li SD (2019) Spindle-like Fe3O4 nanoparticles for improving sensitivity and repeatability of giant magnetoresistance biosensors. J Appl Phys 126(6):6. https://doi.org/10.1063/1.5096345
Jia Z, Misra RDK (2011) Micromagnetic modelling of new generation of FePt and FeRh nanostructures for heat assisted magnetic recording. Mater Technol 26(4):200–205. https://doi.org/10.1179/175355511X13109965351112
Rana S, Gallo A, Srivastava RS, Misra RDK (2007) On the suitability of nanocrystalline ferrites as a magnetic carrier for drug delivery: functionalization, conjugation and drug release kinetics. Acta Biomater 3(2):233–242. https://doi.org/10.1016/j.actbio.2006.10.006
Adhlakha N, Yadav KL, Singh R (2014) Effect of BaTiO3 addition on structural, multiferroic and magneto-dielectric properties of 0.3CoFe2O4–0.7BiFeO3 ceramics. Smart Mater Struct 23(10):16. https://doi.org/10.1088/0964-1726/23/10/105024
Zhang JX, Dai JY, So LC, Sun CL, Lo CY, Or SW, Chan HLW (2009) The effect of magnetic nanoparticles on the morphology, ferroelectric, and magnetoelectric behaviors of CFO/P(VDF-TrFE) 0–3 nanocomposites. J Appl Phys 105(5):6. https://doi.org/10.1063/1.3078111
Martins P, Lasheras A, Gutierrez J, Barandiaran JM, Orue I, Lanceros-Mendez S (2011) Optimizing piezoelectric and magnetoelectric responses on CoFe2O4/P(VDF-TrFE) nanocomposites. J Phys D Appl Phys. https://doi.org/10.1088/0022-3727/44/49/495303
Behera C, Choudhary RNP, Das PR (2017) Development of Multiferroism in PVDF with CoFe2O4 Nanoparticles. J Polym Res 24(4):13. https://doi.org/10.1007/s10965-017-1208-5
Martins P, Goncalves R, Lanceros-Mendez S, Lasheras A, Gutierrez J, Barandiaran JM (2014) Effect of filler dispersion and dispersion method on the piezoelectric and magnetoelectric response of CoFe2O4/P(VDF-TrFE) nanocomposites. Appl Surf Sci 313:215–219. https://doi.org/10.1016/j.apsusc.2014.05.187
Zhang JM, He XZ, Chen XY, Wu YJ, Dong LQ, Cheng K, Lin J, Wang HM, Weng WJ (2020) Enhancing osteogenic differentiation of BMSCs on high magnetoelectric response films. Mater Sci Eng C Mater Biol Appl 113:10. https://doi.org/10.1016/j.msec.2020.110970
Deng H, Li XL, Peng Q, Wang X, Chen JP, Li YD (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Edit 44(18):2782–2785. https://doi.org/10.1002/anie.200462551
Zhou Z, Zhang Z, Zhang QL, Yang H, Zhu YL, Wang YY, Chen L (2020) Controllable core-shell BaTiO3@carbon nanoparticle-enabled P(VDF-TrFE) composites: a cost-effective approach to high-performance piezoelectric nanogenerators. ACS Appl Mater Interfaces 12(1):1567–1576. https://doi.org/10.1021/acsami.9b18780
Tiwary S, Kuila S, Sahoo MR, Barik A, Ghosh IR, Babu PD, Deshpande U, Vishwakarma PN (2020) La2NiMnO6/poly(vinylidene fluoride) nanocomposites with enhanced magnetoelectric voltage. J Appl Phys 127(13):9. https://doi.org/10.1063/1.5140710
Gregorio R, Cestari M (1994) Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). J Polym Sci Pt B Polym Phys 32(5):859–870. https://doi.org/10.1002/polb.1994.090320509
Prabhakaran T, Hemalatha J (2016) Magnetoelectric investigations on poly(vinylidene fluoride)/NiFe2O4 flexible films fabricated through a solution casting method. RSC Adv 6(90):86880–86888. https://doi.org/10.1039/C6RA18032A
Martins P, Costa CM, Lanceros-Mendez S (2011) Nucleation of electroactive beta-phase poly(vinilidene fluoride) with CoFe2O4 and NiFe2O4 nanofillers: a new method for the preparation of multiferroic nanocomposites. Appl Phys A Mater Sci Process 103(1):233–237. https://doi.org/10.1007/s00339-010-6003-7
Liu X, Liu S, Han M-G, Zhao L, Deng H, Li J, Zhu Y, Krusin-Elbaum L, O’Brien S (2013) Magnetoelectricity in CoFe2O4 nanocrystal-P(VDF-HFP) thin films. Nanoscale Res Lett 8(1):374. https://doi.org/10.1186/1556-276X-8-374
Goncalves R, Martins P, Correia DM, Sencadas V, Vilas JL, Leon LM, Botelho G, Lanceros-Mendez S (2015) Development of magnetoelectric CoFe2O4/poly(vinylidene fluoride) microspheres. RSC Adv 5(45):35852–35857. https://doi.org/10.1039/c5ra04409j
Martins P, Kolen’ko YV, Rivas J, Lanceros-Mendez S (2015) Tailored magnetic and magnetoelectric responses of polymer-based composites. ACS Appl Mater Interfaces 7(27):15017–15022. https://doi.org/10.1021/acsami.5b04102
Waldron RD (1955) Infrared spectra of ferrites. Phys Rev 99(6):1727–1735. https://doi.org/10.1103/physrev.99.1727
Qi B, Zhang YD, Yao TP (2020) magnetic field sensing based on magnetoelectric coupling of ampere force effect with piezoelectric effect in Silver/Poly(Vinylidine Fluoride)/Silver Laminated Composite. IEEE Access 8:68049–68056. https://doi.org/10.1109/ACCESS.2020.2986174
Kusuma DY, Nguyen CA, Lee PS (2010) Enhanced ferroelectric switching characteristics of P(VDF-TrFE) for organic memory devices. J Phys Chem B 114(42):13289–13293. https://doi.org/10.1021/jp105249f
Prabhakaran T, Hemalatha J (2016) Combustion synthesis and characterization of cobalt ferrite nanoparticles. Ceram Int 42(12):14113–14120. https://doi.org/10.1016/j.ceramint.2016.06.025
Martins P, Nunes JS, Oliveira J, Perinka N, Lanceros-Mendez S (2020) Spray-printed magnetoelectric multifunctional composites. Compos Pt B Eng 187:6. https://doi.org/10.1016/j.compositesb.2020.107829
Jing WQ, Fang F (2017) A flexible multiferroic composite with high self-biased magnetoelectric coupling. Compos Sci Technol 153:145–150. https://doi.org/10.1016/j.compscitech.2017.10.010
Gupta A, Chatterjee R (2009) Magnetic, dielectric, magnetoelectric, and microstructural studies demonstrating improved magnetoelectric sensitivity in three-phase BaTiO3-CoFe2O4-poly(vinylidene-fluoride) composite. J Appl Phys. https://doi.org/10.1063/1.3181061
Durgaprasad P, Hemalatha J (2018) Magnetoelectric investigations on poly (vinylidene fluoride)/CoFe2O4 flexible electrospun membranes. J Magn Magn Mater 448:94–99. https://doi.org/10.1016/j.jmmm.2017.08.063
Prasad PD, Hemalatha J (2019) Dielectric and energy storage density studies in electrospun fiber mats of polyvinylidene fluoride (PVDF)/zinc ferrite (ZnFe2O4) multiferroic composite. Phys B 573:1–6. https://doi.org/10.1016/j.physb.2019.08.023
Acknowledgements
This work was financially supported by the National Natural Science Foundation of China (NNSFC) with Grant Nos. 11604172, 11674187, and 51871127.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no conflicts of interest.
Additional information
Handling Editor: Gregory Rutledge.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mu, X., Zhang, H., Zhang, C. et al. Poly(vinylidene fluoride-trifluoroethylene)/cobalt ferrite composite films with a self-biased magnetoelectric effect for flexible AC magnetic sensors. J Mater Sci 56, 9728–9740 (2021). https://doi.org/10.1007/s10853-021-05937-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-021-05937-8