Combination of Statistical Similarity Measure and Derivative Morphological Profile Approach for Oil Slick Detection in SAR Images | Journal of Mathematical Modelling and Algorithms in Operations Research Skip to main content
Log in

Combination of Statistical Similarity Measure and Derivative Morphological Profile Approach for Oil Slick Detection in SAR Images

  • Published:
Journal of Mathematical Modelling and Algorithms

Abstract

Synthetic Aperture Radar (SAR) is widely used to detect and monitor oil pollution on the sea surface. As it is sensitive to surface roughness, the presence of oil film on the sea surface decreases the backscattering of this target type resulting in a dark feature patches in SAR images. In this paper, a new approach for oil slicks detection is presented. It is mainly based on SAR image texture analysis using the combination of a statistical similarity measure and a derivative morphological profile. Oil slicks signature is extracted trough two steps procedure. First, SAR image inspection is performed in order to highlight the dark spots suspected to be oil slicks. The inspection is achieved through a similarity measure between a local probability density function (lpdf) of clean water and the lpdf of the area to be inspected. The local distribution is estimated in the neighbourhood of each pixel and compared to a reference one using the Kullback-Leibler KL distance between distributions. Second, and once spots highlighted, texture features extraction using the Derivative Morphological Profile is porformed in order to improve the detection results. algorithm has been applied to Envisat Advanced Synthetic Aperture Radar (ASAR) and European Remote Sensing (ERS) images and it yields an accurate segmentation results. Indeed, the features extraction improves the detection slicks probability Pd of ASAR, respectively ERS, images from 93.08 %to 97.37 %and from 96.32 to 99.57 % on one hand, and reduces the false alarms probability respectively from 6.92 to 2.63 %and from 3.68 to 0.59 % on the other hand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. European Space Agency (ESA): Oil Pollution Monitoring in ERS and its Applications: Marine, vol. 1, BR-128. ESA Publications Division, The Netherlands (1998)

  2. Clark, C.D.: Satellite remote sensing for marine pollution investigations. Mar. Pollut. Bull. 26(7), 357–368 (1993)

    Article  Google Scholar 

  3. Ardhuin, F.G., Mercier, G., Collard, F., Garello, R.: Operational oil slick characterization by SAR imagery and synergistic data. IEEE J. Oceanic Eng. 30(3), 487–495 (2005)

    Article  Google Scholar 

  4. Bjerde, K.W., Solberg, A.H.S., Solberg, R.: Oil spill detection in SAR imagery. In: International Geoscience and Remote Sensing Symposium, IGARSS’93 Proceedings, 18–21 Aug 1993, vol. 3, pp. 943–945. IEEE Internatinal, Tokyo

  5. Solberg, A.H.S., Storvik, G., Solberg, R., Volden, E.: Automatic detection of oil spills in ERS SAR images. IEEE Trans. Geosci. Remote Sens. 37, 1916–1924 (1999)

    Article  Google Scholar 

  6. Kanaa, T., Tonyé, E., Mercier, G., Onana, V.P., Garello, R., Rudant, J.-P., Mvogo, J.: Detection of oil slick signatures in SAR images by fusion of hysteresis thresholding responses. In: Proc. of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (2003)

  7. Barni, M., Betti, M., Mecoeei, A.: A fuzzy approach to oil spill detection on SAR images. In: Geoscience and Remote Sensing Symposium, IGARSS’95, vol. 71(1), pp. 157–159 (1995)

  8. Gasull, A., Fábregas, X., Jiménez, J., Marqués, F., Moreno, V., Herrero, M.A.: Oil spills detection in sar images using mathematical morphology. In: Proc. of the 11th European Signal Processing Conference, EUSIPCO’2002, Toulouse, France. I, pp. 25–28 (2002)

  9. Marghany, M., Craknell, A., Hashim, M.: Modification of fractal algorithm for oil spill detection from RadarSat-1 SAR data. International Journal of Applied Earth Observation and Geoinformation IJAEOG 11, 96–102 (2009)

    Article  Google Scholar 

  10. Marghany, M., Craknell, A., Hashim, M.: Comparison between radarsat-1 SAR different data modes for oil spill detection by fractal box counting algorithm. International Journal of Digital Earth IJDE 2(3), 237–256 (2009)

    Article  Google Scholar 

  11. Kanaa, T.F., Tonyé, E., Mercier, G., Onana, V.: Détection des nappes d’hydrocarbures dans les images RSO par morphologie mathématique. Revue Télédétection RT 4(3), 215–229 (2004)

    Google Scholar 

  12. Kanaa, T.F.N., Mercier, G., Tonye, E.: Sea surface slicks characterization in SAR images, pp. 21–23. Oceans 05 europe (2005)

  13. Mercier, G., Ardhuin, F.G.: Oil slick detection by SAR imagery using Support Vector Machines, pp. 21–23. Oceans 05 europe (2005)

  14. Mercier, G., Ardhuin, F.G.: Partially supervised oil slick detection by SAR imagery using Kernel expansion. IEEE-TGRS 44(10), 2839–2846 (2006)

    Google Scholar 

  15. Derroche, S., Mercier, G.: Unsupervised multiscale oil slick segmentation from SAR images using a vector HMC model. Pattern Recogn. 40(3), 1135–1147 (2007)

    Article  Google Scholar 

  16. Marghany, M., Van Genderen, J.L.: Texture algorithms for oil pollution detection and tidal current effects on oil spill spreading. Asian J. Geoinformatics 13, 33–43 (2001)

    Google Scholar 

  17. Marghany, M.: Radarsat automatic algorithms for detecting coastal oil spill pollution. International Journal of Applied Earth Observation and Geoinformation IJAEOG 3(2), 191–196 (2001)

    Article  Google Scholar 

  18. Topouzelis, K., Karathanassai, V., Pavlakis, P., Rokos, D.: Oil spill detection: SAR multi-scale segmentation and object features evaluation. In: Proc. Remote Sensing Ocean and Sea Ice, pp. 77–87, Crete, Greece, 23–27 Sept 2002

  19. Topouzelis, K., Karathanassi, V., Pavlakis, P., Rokos, D.: Oil Spill Detection Using Rbf Neural Networks And Sar Data. XXth ISPRS Congress. Istanbul, Turkey (2004)

  20. Berizzi, F., Martorella, M., Bertini, G., Garzelli, A., Nencini, F., Dell’Acqua, F., Gamba, P.: Sea SAR image analysis by fractal data fusion. In: the Proceeding of IGARSS’04 conference, September 2004. Anchorage, Alaska, USA (2004)

  21. Inglada, J., Mercier, G.: A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis. IEEE Trans. Geosci. Remote Sens. 45(5), 1432–1446 (2007)

    Article  Google Scholar 

  22. Benediktsson, J.At., Pesaresi, M., Arnason, K.: Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Trans. Geosci. Remote Sens. 41(9), 1940–1949 (2003)

    Article  Google Scholar 

  23. Lounis, B., Mercier G., Belhadj Aissa, A.: Using statistical similarity measure and mathematical morphology for oil slick detection in Radar SAR images. Proceedings of the 11th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE2011. Benidorm, Spain, pp. 14447–14461, 26–30 June 2011

  24. Gonzalez, R., Woods, R.: Digital Image Processing, 2nd edn. Prentice Hall, Englewood Cliffs, NJ (2002)

    Google Scholar 

  25. Marghany, M., Hashim M.: Discrimination between oil spill and look-alike using fractal dimension algorithm from RADARSAT-1 SAR and AIRSAR/POLSAR data. International Journal of Physical Sciences IJPS 6(7), 1711–1719 (2011)

    Google Scholar 

  26. Marghany, M., Hashim M.: Comparison between Mahalanobis classification and neural network for oil spill detection using RADARSAT-1 SAR data. International Journal of Physical Sciences IJPS 6(3), 566–576 (2011)

    Google Scholar 

  27. Nikias, C.L., Petropulu, A.P.: Higher-Order Spectra Analysis a Nonlinear Signal Processing Framework. PTR Prentice Hall, Englewoods Cliff (1993)

    MATH  Google Scholar 

  28. Stuart, A., Keith Ord, J.: Kendall’s Advanced Theory of Statistics, 5th edn., pp. 72–118. Edward Arnold, London, UK (1991)

    MATH  Google Scholar 

  29. Lin, J., Saito, N., Levine, R.: Edgeworth approximation of the Kullback-Leibler distance towards problems in image analysis. Tech. Rep., University of California, Davis. Available on: http://www.math.ucdavis.edu/~saito/publications/saito_kljasa.pdf (1999)

  30. McCullagh, P.: Tensor Methods in Statistics. Chapman & Hall, London, UK (1987)

    MATH  Google Scholar 

  31. Lounis, B., Mercier, G., Belhadj Aissa, A.: Statistical similarity measure for oil slick detection in SAR image. In: IEEE International Geoscience And Remote Sensing Symposium IGARSS’08, 6 au 11 juillet 2008, pp. 233–236. à Boston, Massachusetts, USA (2008)

  32. Benediktsson, J.At., Palmason, J.A., Sveinsson, J.R.: Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 43(3), 480–491 (2005)

    Article  Google Scholar 

  33. Chanussot, J., Benediktsson, J.At., Fauvel, M.: Classification of remote sensing images from urban areas using a fuzzy possibilistic model. IEEE Geosci. Remote Sens. Lett. 3(1), 40–44 (2006)

    Article  Google Scholar 

  34. Richards, J., Jia, X.: Remote sensing digital image analysis, an introduction, 4th edn. Springer. ISBN 3540251286–454s (2006)

  35. Pavlakis, P., Sieber, A.J., Alexandry, S.: Monitoring oil-spill pollution in the Mediterranean with ERS SAR. Earth Obs. Q. 52(4), 13–16 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahia Lounis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lounis, B., Mercier, G. & Belhadj-Aissa, A. Combination of Statistical Similarity Measure and Derivative Morphological Profile Approach for Oil Slick Detection in SAR Images. J Math Model Algor 11, 409–432 (2012). https://doi.org/10.1007/s10852-012-9206-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10852-012-9206-4

Keywords

Navigation