Identification of Regulatory Network Motifs from Gene Expression Data | Journal of Mathematical Modelling and Algorithms in Operations Research Skip to main content
Log in

Identification of Regulatory Network Motifs from Gene Expression Data

  • Published:
Journal of Mathematical Modelling and Algorithms

Abstract

The modern systems biology approach to the study of molecular cellular biology, consists in the development of computational tools to support the formulation of new hypotheses on the molecular mechanisms underlying the observed cell behavior. Recent biotechnologies are able to provide precise measures of gene expression time courses in response to a large variety of internal and environmental perturbations. In this paper, we propose a simple algorithm for the selection of the “best” regulatory network motif among a number of alternatives, using the expression time course of the genes which are the final targets of the activated signalling pathway. To this aim, we considered the Hill nonlinear ODEs model to simulate the behavior of two ubiquitous motifs: the single input motif and the multi output feed-forward loop motif. Our algorithm has been tested on simulated noisy data assuming the presence of a step-wise regulatory signal. The results clearly show that our method is potentially able to robustly discriminate between alternative motifs, thus providing a useful in silico identification tool for the experimenter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon, U.: Network motifs: theory and experimental approaches. Nat. Rev., Genet. 8, 450–461 (2007)

    Article  Google Scholar 

  2. Angeli, D., Sontag, E.D.: Oscillations in I/O monotone systems. IEEE Trans. Circuits Syst. Spec. Issue Syst. Bio. 55, 166–176 (2008)

    Google Scholar 

  3. Dalla Mora, M., Germani, A., Manes, C.: Design of state observers from a drift-observability property. IEEE Trans. Automat. Contr. 45(8), 1536–1540 (2000)

    Article  MATH  Google Scholar 

  4. de Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9(1), 67–103 (2002)

    Article  Google Scholar 

  5. Farina, L., De Santis, A., Morelli, G., Ruberti, I.: Dynamic measure of gene co-regulation. IET Syst. Biol. 1(1), 10–17 (2007)

    Article  Google Scholar 

  6. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. J. Comp. Biol. 7, 601–620 (2000)

    Article  Google Scholar 

  7. Gardner, T.S., Faith, J.J.: Reverse-engineering transcription control networks. Physics of Life Reviews 2, 65–88 (2005)

    Article  Google Scholar 

  8. Garneau, N.L., Wilusz, J., Wilusz, C.J.: The highways and byways of mRNA decay. Nat. Rev. Mol. Cell. Bio. 8, 113–126 (2007)

    Article  Google Scholar 

  9. Husmeier, D.: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19(17), 2271–2282 (2003)

    Article  Google Scholar 

  10. Kitano, H.: Computational systems biology. Nature 420, 206–210 (2002)

    Article  Google Scholar 

  11. Kitano, H.: Towards a theory of biological robustness. Mol. Syst. Biol. 3, 137 (2007)

    Article  Google Scholar 

  12. Krishna, S., Maslov, S., Sneppen, K.: UV-induced mutagenesis in escherichia coli SOS response: a quantitative model. PLoS Comput Biol 3(3), e41 (2007)

    Article  MathSciNet  Google Scholar 

  13. Lee et al.: Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298(25), 799–804 (2002)

    Article  Google Scholar 

  14. Luscombe, N.M., Babu, M.M., Yu, H., Snyder, M., Teichmann, S.A., Gerstein, M.: Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431(16), 308–312 (2004)

    Article  Google Scholar 

  15. Mangan, S., Zaslaver, A., Alon, U.: The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. J. Mol. Biol. 334(2), 197–204 (2003)

    Article  Google Scholar 

  16. Mogno, I., Farina, L., Gardner, T.: CRP drives a non-specific expression burst in E. coli sugar catabolic operons during starvation (submitted)

  17. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

    MATH  Google Scholar 

  18. Palumbo, M.C., Farina, L., De Santis, A., Giuliani, A., Colosimo, A., Morelli, G., Ruberti, I.: Collective behaviour in gene regulation: post-transcriptional regulation and the temporal compartmentalization of cellular cycles, FEBS J. 275, 2364–2371 (2008)

    Google Scholar 

  19. Perkins, T.J., Hallett, M., Glass, L.: Inferring models of gene expression dynamics. J. Theor. Biol. 230(3), 289–299 (2004)

    Article  MathSciNet  Google Scholar 

  20. Perkins, T.J., Jaeger, J., Reinitz, J., Glass, L.: Reverse engineering the gap gene network of drosophila melanogaster. PLoS Comput. Biol. 2(5), e51 (2006)

    Article  Google Scholar 

  21. Ripp, S., Moser, S., Weathers, B., Caylor, S., Blalock, B., Islam, S., Sayler, G.: Bioluminescent bioreporter integrated circuit (BBIC) sensors. In: Bio Micro and Nanosystems Conference, BMN ’06, pp. 59-60. San Francisco, CA (2006)

  22. Soranzo, N., Bianconi, G., Altafini, C.: Comparing association network algorithms for reverse engineering of large scale gene regulatory networks: synthetic vs real data. Bioinformatics 23(13), 1640–1647 (2007)

    Article  Google Scholar 

  23. Stelling, J., Sauer, U., Szallasi, Z., Doyle III, F.J., Doyle, J.: Robustness of cellular functions. Cell 118, 675–685 (2004)

    Article  Google Scholar 

  24. Yi, T.M., Huang, Y., Simon, M.I., Doyle, J.: Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc. Natl. Acad. Sci. U.S.A. 97(9), 4649–4653 (2000)

    Article  Google Scholar 

  25. Zaslaver, A., Bren, A., Ronen, M., Itzkovitz, S., Kikoin, I., Shavit, S., Liebermeister, W., Surette, M.G., Alon, U.: A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nature Methods 3, 623–628 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Farina.

Additional information

This work is supported by CNR (Italian National Research Council).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farina, L., Germani, A., Mavelli, G. et al. Identification of Regulatory Network Motifs from Gene Expression Data. J Math Model Algor 9, 233–245 (2010). https://doi.org/10.1007/s10852-010-9137-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10852-010-9137-x

Keywords

Navigation