Single- and Multi-Objective Cooperation for the Flexible Docking Problem | Journal of Mathematical Modelling and Algorithms in Operations Research Skip to main content
Log in

Single- and Multi-Objective Cooperation for the Flexible Docking Problem

  • Published:
Journal of Mathematical Modelling and Algorithms

Abstract

In this article, the impact of single-objective methods as intensification factors in a multi-objective approach is presented for the flexible docking problem. Based on a novel tri-objective model, a parallel multi-objective genetic algorithm has been designed. However, due to the high variability of the energy objective, intensification methods focused on this objective have been also included in order to improve the convergence speed of the genetic algorithm and the quality of the results. The corresponding approach, combining single- and multi-objective methods, has been proved efficient according to the tested instances and the quality criterion used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boisson, J.-C., Jourdan, L., Talbi, E.-G., Horvath, D.: Parallel multi-objective algorithms for the molecular docking problem. In: IEEE 2008 Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Sun Valley Resort, Idaho, USA, 15–17 September 2008

  2. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E.: UCSF Chimera - a visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605–1612 (2004)

    Article  Google Scholar 

  3. Sanner, M.F., Olson, A.J., Spehner, J.C.: Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38(3), 305–320 (1996)

    Article  Google Scholar 

  4. Pedretti, A.A., Villa, L., Vistoli, G.: VEGA - an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J.C.A.M.D. 18, 167–173 (2004)

    Article  Google Scholar 

  5. Boisson, J-C., Jourdan, L., Talbi, E-G.: ParadisEO-MO: A Framework to Design Single Solution Metaheuristics. INRIA Technical report, INRIA Lille Nord Europe (2008)

  6. Boisson, J-C.: Modélisation et résolution par métaheuristiques coopératives : de l’atome à la séquence protéique PhD Thesis, Université des Sciences et Technologie de Lille (2008)

  7. Thomsen, R.: Protein-Ligand Docking with Evolutionary Algorithms Chapter in the book entitled Computational Intelligence in Bioinformatics (2008)

  8. Lee, B., Richard, F.M.: The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379–400 (1971)

    Article  Google Scholar 

  9. Richard, F.M.: Areas, volumes, packing and protein structure. Annu. Rev. Biophys. Bioeng. 6, 151–176 (1977)

    Article  Google Scholar 

  10. Le Grand, S.M., Merz, K.M., Jr.: Rapid approximation to molecular surface area via the use of boolean logic and look-up tables. J. Comput. Chem. 14, 349–352 (1993)

    Article  Google Scholar 

  11. Leaver-Fay, A., Butterfoss, G.L., Snoeyink, J., Kuhlman, B.: Maintaining solvent accessible surface area under rotamer substitution for protein design. J. Comput. Chem. 28(8), 1336–1341 (2007)

    Article  Google Scholar 

  12. Shrake, A., Rupley, J.A.: Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J. Mol. Biol. 79(2), 351–364 (1973)

    Article  Google Scholar 

  13. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 181–197 (2002)

    Google Scholar 

  14. Zitzler, E., Kunzli, S.: Indicator-based selection in multiobjective search. Parallel Problem Solving from Nature, PPSN VIII, vol. 3242, pp. 382–842. Springer, Germany (2004)

    Google Scholar 

  15. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Proceedings of the 5th International Conference on Genetic Algorithms, pp. 416–423. San Mateo, California, USA, (1993)

  16. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  17. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm for multiobjective optimization, In: Proceedings of the Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001), pp. 95–100 (2001)

  18. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Har, W.E., Belew, R.K., Olson, A.J.: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19, 1639–1662 (1998)

    Article  Google Scholar 

  19. Ewing, T.J.A., Kuntz, I.D.: Critical evaluation of search algorithms for automated molecular docking and database screening. J. Comput. Chem. 18(9), 1175–1189 (1997)

    Article  Google Scholar 

  20. Rarey, M., Kramer, B., Lengauer, T., Klebe, G.: A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261(3), 470–489 (1994)

    Article  Google Scholar 

  21. Bursulaya, B.D., Totrov, M., Abagyan, R., Brooks, C.L.: Comparative study of several algorithms for flexible ligand docking. J. Comput.-Aided Mol. Des. 17(11), 755–763 (2003)

    Article  Google Scholar 

  22. Liefooghe, A., Basseur, M., Jourdan, L., Talbi, E.-G.: ParadisEO-MOEO: a framework for multi-objective optimization. In: The Proceedings of EMO’2007, pp. 457–471 (2007)

  23. Cahon, S., Melab, N., Talbi, E.-G.: ParadisEO: a framework for the reusable design of parallel and distributed metaheuristics. Journal of Heuristics 10(3), 357–380 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Charles Boisson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boisson, JC., Jourdan, L., Talbi, EG. et al. Single- and Multi-Objective Cooperation for the Flexible Docking Problem. J Math Model Algor 9, 195–208 (2010). https://doi.org/10.1007/s10852-010-9128-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10852-010-9128-y

Keywords

Navigation