Abstract
In this article, the impact of single-objective methods as intensification factors in a multi-objective approach is presented for the flexible docking problem. Based on a novel tri-objective model, a parallel multi-objective genetic algorithm has been designed. However, due to the high variability of the energy objective, intensification methods focused on this objective have been also included in order to improve the convergence speed of the genetic algorithm and the quality of the results. The corresponding approach, combining single- and multi-objective methods, has been proved efficient according to the tested instances and the quality criterion used.
Similar content being viewed by others
References
Boisson, J.-C., Jourdan, L., Talbi, E.-G., Horvath, D.: Parallel multi-objective algorithms for the molecular docking problem. In: IEEE 2008 Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Sun Valley Resort, Idaho, USA, 15–17 September 2008
Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E.: UCSF Chimera - a visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605–1612 (2004)
Sanner, M.F., Olson, A.J., Spehner, J.C.: Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38(3), 305–320 (1996)
Pedretti, A.A., Villa, L., Vistoli, G.: VEGA - an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J.C.A.M.D. 18, 167–173 (2004)
Boisson, J-C., Jourdan, L., Talbi, E-G.: ParadisEO-MO: A Framework to Design Single Solution Metaheuristics. INRIA Technical report, INRIA Lille Nord Europe (2008)
Boisson, J-C.: Modélisation et résolution par métaheuristiques coopératives : de l’atome à la séquence protéique PhD Thesis, Université des Sciences et Technologie de Lille (2008)
Thomsen, R.: Protein-Ligand Docking with Evolutionary Algorithms Chapter in the book entitled Computational Intelligence in Bioinformatics (2008)
Lee, B., Richard, F.M.: The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379–400 (1971)
Richard, F.M.: Areas, volumes, packing and protein structure. Annu. Rev. Biophys. Bioeng. 6, 151–176 (1977)
Le Grand, S.M., Merz, K.M., Jr.: Rapid approximation to molecular surface area via the use of boolean logic and look-up tables. J. Comput. Chem. 14, 349–352 (1993)
Leaver-Fay, A., Butterfoss, G.L., Snoeyink, J., Kuhlman, B.: Maintaining solvent accessible surface area under rotamer substitution for protein design. J. Comput. Chem. 28(8), 1336–1341 (2007)
Shrake, A., Rupley, J.A.: Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J. Mol. Biol. 79(2), 351–364 (1973)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 181–197 (2002)
Zitzler, E., Kunzli, S.: Indicator-based selection in multiobjective search. Parallel Problem Solving from Nature, PPSN VIII, vol. 3242, pp. 382–842. Springer, Germany (2004)
Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Proceedings of the 5th International Conference on Genetic Algorithms, pp. 416–423. San Mateo, California, USA, (1993)
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm for multiobjective optimization, In: Proceedings of the Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001), pp. 95–100 (2001)
Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Har, W.E., Belew, R.K., Olson, A.J.: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19, 1639–1662 (1998)
Ewing, T.J.A., Kuntz, I.D.: Critical evaluation of search algorithms for automated molecular docking and database screening. J. Comput. Chem. 18(9), 1175–1189 (1997)
Rarey, M., Kramer, B., Lengauer, T., Klebe, G.: A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261(3), 470–489 (1994)
Bursulaya, B.D., Totrov, M., Abagyan, R., Brooks, C.L.: Comparative study of several algorithms for flexible ligand docking. J. Comput.-Aided Mol. Des. 17(11), 755–763 (2003)
Liefooghe, A., Basseur, M., Jourdan, L., Talbi, E.-G.: ParadisEO-MOEO: a framework for multi-objective optimization. In: The Proceedings of EMO’2007, pp. 457–471 (2007)
Cahon, S., Melab, N., Talbi, E.-G.: ParadisEO: a framework for the reusable design of parallel and distributed metaheuristics. Journal of Heuristics 10(3), 357–380 (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Boisson, JC., Jourdan, L., Talbi, EG. et al. Single- and Multi-Objective Cooperation for the Flexible Docking Problem. J Math Model Algor 9, 195–208 (2010). https://doi.org/10.1007/s10852-010-9128-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10852-010-9128-y