Abstract
Median filtering (MF) is a canonical image processing operation truly useful in many practical applications. The MF most appealing feature is its resistance to noise and errors in data, but because the method requires window values to be sorted it is computationally expensive. In this work, a new insight into MF capabilities based on the optimal breakdown value (BV) of the median is offered, and it is also shown that the BV-based versions of two of the most popular MF algorithms outperform their corresponding standard versions. A general framework for both the theoretical analysis and comparison of MF algorithms is presented in the process, which will hopefully contribute to a better understanding of the MF many subtle features. The introduced ideas are experimentally tested by using real and synthetic images.
Similar content being viewed by others
Notes
Available: http://www.edgetech.com/.
References
Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms. McGraw-Hill, New York (2001)
Skiena, S.S.: The Algorithm Design Manual. Springer, London (2008)
Tukey, J.: Exploratory Data Analysis. Addison-Wesley, Menlo Park (1977)
Maragos, P., Schafer, R.: Morphological filters—part II: their relations to median, order-statistic, and stack filters. IEEE Trans. Acoust. Speech Signal Process. 35, 1170–1184 (1987)
Pratt, W.K.: Digital Image Processing: PIKS Inside. Wiley, New York (2001)
Eng, How-Lung, Ma, Kai-Kuang: Noise adaptive soft-switching median filter. IEEE Trans. Image Process. 10, 242–251 (2001)
Nelson, T.R., Pretorius, D.H.: Three-dimensional ultrasound of fetal surface features. Ultrasound Obstet. Gynecol. 2, 166–174 (1992)
Carayon, P., Portier, M., Dussossoy, D., Bord, A., Petitpretre, G., Canat, X., Le Fur, G., Casellas, P.: Involvement of peripheral benzodiazepine receptors in the protection of hematopoietic cells against oxygen radical damage. Blood 87, 3170–3178 (1996)
LeBas, T.P., Mason, D.C., Millard, N.C.: TOBI image processing: the state of the art. J. Ocean. Eng. 20, 85–93 (1995)
Villar, S.A., Torcida, S., Acosta, G.G.: Un Enfoque Novedoso del Filtro de Mediana para el Suavizado de Señales Acústicas de Sonar de Barrido Lateral. Presented at the ARGENCON 2014, San Carlos de Bariloche-Neuquen-Argentina June 11 (2014)
Chen, Zhao-Yan, Wang, Tong, Ma, Nan: Accurate baseline estimation for synthetic aperture radar-ground moving target indication systems based on co-registration and median filtering. Radar Sonar Navig. IET. 8, 607–615 (2014)
Juhola, M., Katajainen, J., aRaita, T.: Comparison of algorithms for standard median filtering. IEEE Trans. Signal Process. 39, 204–208 (1991)
Langsam, Y., Augenstein, J., Tenenbaum, A.: Data Structures Using C and C++. Prentice Hall, Englewood Cliffs (1995)
Corwin, E., Logar, A.: Sorting in linear time-variations on the bucket sort. J. Comput. Sci. Coll. 20, 197–202 (2004)
Thomas, C.H., Charles, L.E., Ronald, R.L., Clifford, S.: Introduction to Algorithms. MIT Press and McGraw-Hill, Cambridge (2001)
Tibshirani, R.J.: Fast Computation of the Median by Successive Binning (2008). ArXiv Prepr. arXiv:0806.3301
Suomela, J.: Median Filtering is Equivalent to Sorting (2014). ArXiv Prepr. arXiv:1406.1717
Huang, T., Yang, G., Tang, G.: A fast two-dimensional median filtering algorithm. IEEE Trans. Acoust. Speech Signal Process. 27, 13–18 (1979)
Weiss, B.: Fast median and bilateral filtering. ACM Trans. Graph. 25, 519–526 (2006)
Gil, J., Werman, M.: Computing 2-D min, median, and maxfilters. IEEE Trans. Pattern Anal. Mach. Intell. 15, 504–507 (1993)
Perreault, S., Hebert, P.: Median filtering in constant time. IEEE Trans. Image Process. 16, 2389–2394 (2007)
Urbach, E.R., Wilkinson, M.H.F.: Efficient 2-D grayscale morphological transformations with arbitrary flat structuring elements. IEEE Trans. Image Process. 17, 1–8 (2008)
Alekseychuk, A.: Hierarchical recursive running median. In: 19th IEEE International Conference on Image Processing (ICIP 2012), Lake Buena Vista, Orlando, FL, USA, September 30– October 3, 2012, pp. 109–112 (2012)
Huber, P.J.: Robust Statistics. Wiley, New York (1981)
Kluge, W.: Abstract Computing Machines: A Lambda Calculus Perspective. Springer, Berlin (2005)
Diehl, S., Hartel, P., Sestoft, P.: Abstract machines for programming language implementation. Future Gener. Comput. Syst. 16, 739–751 (2000)
Jaime, F.J., Hormigo, J., Villalba, J., Zapata, E.L.: New SIMD instructions set for image processing applications enhancement. In: 15th IEEE International Conference on Image Processing, 2008 (ICIP 2008), pp. 1396–1399 (2008)
Alparone, L., Cappellini, V., Garzelli, A.: A coarse-to-fine algorithm for fast median filtering of image data with a huge number of levels. Signal Process. 39, 33–41 (1994)
Acosta, G.G., Villar, S.A.: Accumulated CA-CFAR process in 2-D for online object detection from sidescan sonar data. IEEE J. Ocean. Eng. 40, 558–569 (2015)
Villar, S.A., Acosta, G.G., Sousa, A.L., Rozenfeld, A.: Evaluation of an efficient approach for target tracking from acoustic imagery for the perception system of an autonomous underwater vehicle. J. Adv. Robot. Syst. InTech. 11, 1–13 (2014)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Villar, S.A., Torcida, S. & Acosta, G.G. Median Filtering: A New Insight. J Math Imaging Vis 58, 130–146 (2017). https://doi.org/10.1007/s10851-016-0694-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-016-0694-0