Abstract
Morphological image operators are important geometry-based image transformations, whereas fuzzy set theory and fuzzy logic, favoured for their ability to describe and cope with imprecise and uncertain natures of objects, are successfully applied to image processing and pattern recognition. In this paper, generalizations of hit-or-miss transformation (HMT) for grey-scale images are investigated in the framework of fuzzy set theory and fuzzy logic. To address the problem of robust object identification, a notion of fuzzy vertical translation is proposed and two variable precision fuzzy HMT models are developed for grey-scale images to cater for flexible selection of structuring elements in the fuzzy setting. Their extensions to the rank case are designed to adapt the HMT to noisy images and images with inhomogeneous intensities. Superior performance of the proposed models over the state-of-the-art HMT models in objection extraction is verified by a series of experiments on synthetic images and real images.












Similar content being viewed by others
References
Agam, G., Dinstein, I.: Regulated morphological operators. Pattern Recogn. 32(6), 947–971 (1999)
Andreopoulos, A., Tsotsos, J.K.: 50 years of object recognition: Directions forward. Comput. Vis. Image Underst. 117, 827–891 (2013)
Barat, C., Ducottet, C., Jourlin M.: Pattern matching using morphological probing. In: Proc. International Conference on Image Process. pp. 369–372 (2003)
Bloch, I., Maître, H.: Fuzzy mathematical morphologies: a comparative study. Pattern Recogn. 28(9), 1341–1387 (1995)
Bloch, I.: Lattice fuzzy sets and bipolar fuzzy sets, and mathematical morphology. Inform. Sci. 181(10), 2002–2015 (2011)
Bloomberg, D.S., Vincent, L.M.: Pattern matching using the blur hit-or-miss transform. J. Electron. Imaging 9, 140–150 (2000)
Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1990)
De Baets, B., Kerre, E., Gupta, M.: The fundamentals of fuzzy mathematical morphology, part I: basic concepts. Int. J. Gen. Syst. 23, 155–171 (1994)
De Baets, B., Kerre, E., Gupta, M.: The fundamentals of fuzzy mathematical morphology, part II: idempotence, convexity and decomposition. Int. J. Gen. Syst. 23, 307–322 (1995)
Deng, T., Chen, Y.: Generalized fuzzy morphological operators. Fuzzy Systems and Knowledge Discovery. LNCS, vol. 3614, pp. 275–284 (2005)
Deng, T., Heijmans, H.: Grey-scale morphology based on fuzzy logic. J. Math. Imaging Vis. 16(2), 155–171 (2002)
Gasterators, A., Andreadis, I., Tsalides, Ph: Fuzzy soft mathematical morphology. IEE Proc. Vis. Image Signal Process. 145(1), 41–49 (1998)
Harvey N., Porter R., Theiler J.: Ship detection in satellite imagery using rank-order grey-scale hit-or-miss transforms. http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-10-01553 (2010)
Heijmans, H.: Theoretical aspects of gray-level morphology. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 568–582 (1991)
Heijmans, H.: Morphological Image Operators. Academic Press, Boston (1994)
Heygster, G.: Rank filters in digital image processing. Comput. Graph. Image Process. 19(2), 148–164 (1982)
Jan, J.: Medical Image Processing, Reconstruction and Restoration: Concepts and Methods. CRC Press, Boca Raton (2006)
Khosravi, M., Schafer, R.: Template matching based on a grayscale hit-or-miss transform. IEEE Trans. Image Process. 5(5), 1060–1066 (1996)
Koskinen, L., Astola, J.: Soft morphological filters: A robust morphological filtering method. J. Electron. Imag. 3(1), 60–70 (1994)
Kuosmanen, P., Astola, J.: Soft morphological filtering. J. Math. Imag. Vis. 5(3), 231–262 (1995)
Maragos P.: Optimal morphological approaches to image matching and object detection. In: Proceedings of Second International Conference on Computing and Visualization. pp. 655–699 (1988)
Maragos, P.: Lattice image processing: a unification of morphological and fuzzy algebraic systems. J. Math. Imaging Vis. 22(2–3), 333–353 (2005)
Maragos, P., Schafer, R.: Morphological filters, part II: their relations to median, order-statistic, and stack filters. IEEE. Trans. Acoustics Speech Signal Process. 35(8), 1170–1184 (1987)
Murray, P., Marshall, S.: A new design tool for feature extraction in noisy images based on grayscale hit-or-miss transforms. IEEE Trans. Image Process. 20(7), 1938–1948 (2011)
Murray P., Marshall S.: Selectively filtering image features using a Percentage Occupancy Hit-or-Miss Transform. In: IET Conference on Image Process. pp. 1–6 (2012)
Naegel, B., Passat, N., Ronse, C.: Grey-level hit-or-miss transforms, part I: unified theory. Pattern Recogn. 40(2), 635–647 (2007)
Naegel, B., Passat, N., Ronse, C.: Grey-level hit-or-miss transforms, part II: application to angiographic image processing. Pattern Recogn. 40(2), 648–658 (2007)
Nguyen, H.T., Walker, E.A.: A First Course in Fuzzy Logic, 2nd edn. Chapman & HALL/CRC, New York (1999)
Perret, B., Lefèvre, S., Collet, Ch.: A robust hit-or-miss transform for template matching applied to very noisy astronomical images. Pattern Recogn. 42(11), 2470–2480 (2009)
Raducanu, B., Grana, M.: A grayscale hit-or-miss transform based on level sets. In: Proceedings of International Conference on Image Process. vol. 2, pp. 931–933 (2000)
Ronse, C.: Why mathematical morphology needs complete lattices. Signal Process. 21(1), 129–154 (1990)
Ronse, C.: A lattice-theoretical morphological view on template extraction in images. J. Vis. Commun. Image R. 7(3), 273–295 (1996)
Schnofeld, D.: On the relation of order-statistics filters and template matching: optimal morphological pattern recognition. IEEE Trans. Image Process. 9(5), 945–949 (2000)
Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)
Sinha, D., Dougherty, E.R.: Fuzzy methematical morpholgy. J. Vis. Commun. Image R. 3(3), 286–302 (1992)
Skoneczny, S., Cieslik, D.: Weighted order statistic filters for pattern detection. ICANNGA 2007, Part II. LNCS 4432, 624–632 (2007)
Soille, P.: On morphological operators based on rank filters. Pattern Recogn. 35(2), 527–535 (2002)
Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, New York (2003)
Stankov, K., He, D.C.: Building detection in very high spatial resolution multispectral images using the hit-or-miss transform. IEEE Geosci. Remote S. 10(1), 86–90 (2013)
Sternberg, S.R.: Grayscale morphology. Comput Vis. Graph. Image Process 35(3), 333–355 (1986)
Sussner, P., Nachtegael, M., Melange, T., Deschrijver, G., Esmi, E., Kerre, E.: Interval-valued and intuitionistic fuzzy mathematical morphologies as special cases of L-fuzzy mathematical morphology. J. Math. Imaging Vis. 43, 50–71 (2012)
Sussner, P., Ritter, G.X.: Decomposition of gray-scale morphological templates using the rank method. IEEE Trans. Pattern Anal. Mach. Intell. 19(6), 649–658 (1997)
Sussner, P., Valle, M.E.: Classification of fuzzy mathematical morphologies based on concepts of inclusion measure and duality. J. Math. Imaging Vis. 32(2), 139–159 (2008)
Wilson, S.: Vector morphology and iconic neural networks. IEEE Trans. Systems Man Cybernet. 19(6), 1636–1644 (1989)
Wu, C., Agam, G., Roy, A.S., Armato III, S.G.: Regulated morphology approach to fuzzy shape analysis with application to blood vessel extraction in thoracic CT scans. In: Proceedings of SPIE. vol. 5370, 1262–1268 (2004)
Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
Acknowledgments
The authors would like to thank the editor-in-chief and anonymous reviewers for constructive comments and suggestions for improving the quality and readability of this paper. This paper is partly supported by the National Natural Science Foundation of China under Grants 10771043 and 11471001.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Xie, W., Deng, T., Li, Q. et al. Variable Precision Fuzzy Hit-or-Miss Transformation Models to Object Identification in Grey-Scale Images. J Math Imaging Vis 53, 112–129 (2015). https://doi.org/10.1007/s10851-014-0552-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-014-0552-x