Abstract
Compression is an important field of digital image processing where well-engineered methods with high performance exist. Partial differential equations (PDEs), however, have not much been explored in this context so far. In our paper we introduce a novel framework for image compression that makes use of the interpolation qualities of edge-enhancing diffusion. Although this anisotropic diffusion equation with a diffusion tensor was originally proposed for image denoising, we show that it outperforms many other PDEs when sparse scattered data must be interpolated. To exploit this property for image compression, we consider an adaptive triangulation method for removing less significant pixels from the image. The remaining points serve as scattered interpolation data for the diffusion process. They can be coded in a compact way that reflects the B-tree structure of the triangulation. We supplement the coding step with a number of amendments such as error threshold adaptation, diffusion-based point selection, and specific quantisation strategies. Our experiments illustrate the usefulness of each of these modifications. They demonstrate that for high compression rates, our PDE-based approach does not only give far better results than the widely-used JPEG standard, but can even come close to the quality of the highly optimised JPEG2000 codec.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Alter, F., Durand, S., Froment, J.: Adapted total variation for artifact free decompression of JPEG images. J. Math. Imaging Vis. 23(2), 199–211 (2005)
Aly, H.A., Dubois, E.: Image up-sampling using total-variation regularization with a new observation model. IEEE Trans. Image Process. 14(10), 1647–1659 (2005)
Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Applied Mathematical Sciences, vol. 147. Springer, New York (2002)
Aurich, V., Daub, U.: Bilddatenkompression mit geplanten Verlusten und hoher Rate. In: Jähne, B., Geißler, P., Haußecker, H., Hering, F. (eds.) Mustererkennung 1996, pp. 138–146. Springer, Berlin (1996)
Bae, E.: New PDE-based methods for surface and image reconstruction. Master’s thesis, Dept. of Mathematics, University of Bergen, Norway (2007)
Bajcsy, R., Kovačič, S.: Multiresolution elastic matching. Comput. Vis. Graph. Image Process. 46(1), 1–21 (1989)
Battiato, S., Gallo, G., Stanco, F.: Smart interpolation by anisotropic diffusion. In: Proc. Twelvth International Conference on Image Analysis and Processing, Montova, Italy, September 2003, pp. 572–577. IEEE Comput. Soc., Los Alamitos (2003)
Belahmidi, A., Guichard, F.: A partial differential equation approach to image zoom. In: Proc. 2004 IEEE International Conference on Image Processing, vol. 1, pp. 649–652. Singapore, October 2004
Belhachmi, Z., Bucur, D., Burgeth, B., Weickert, J.: How to choose interpolation data in images. Technical Report 205, Dept. of Mathematics, Saarland University, Saarbrücken, Germany, February 2008
Bertalmío, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proc. SIGGRAPH 2000, pp. 417–424. New Orleans, July 2000
Bornemann, F., März, T.: Fast image inpainting based on coherence transport. J. Math. Imaging Vis. 28(3), 259–278 (2007)
Bruckstein, A.M.: On image extrapolation. Technical Report CIS9316, Computer Science Department, Technion, Haifa, Israel, April 1993
Candés, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)
Carlsson, S.: Sketch based coding of grey level images. Signal Process. 15, 57–83 (1988)
Caselles, V., Morel, J.-M., Sbert, C.: An axiomatic approach to image interpolation. IEEE Trans. Image Process. 7(3), 376–386 (1998)
Chan, T.F., Shen, J.: Non-texture inpainting by curvature-driven diffusions (CDD). J. Vis. Commun. Image Represent. 12(4), 436–449 (2001)
Chan, T.F., Shen, J.: Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. SIAM, Philadelphia (2005)
Chan, T.F., Zhou, H.M.: Feature preserving lossy image compression using nonlinear PDE’s. In: Luk, F.T. (ed.) Advanced Signal Processing Algorithms, Architectures, and Implementations VIII. Proceedings of SPIE, vol. 3461, pp. 316–327. SPIE Press, Bellingham (1998)
Chan, T.F., Zhou, H.M.: Total variation improved wavelet thresholding in image compression. In: Proc. Seventh International Conference on Image Processing, vol. II, pp. 391–394. Vancouver, Canada, September 2000
Charbonnier, P., Blanc-Féraud, L., Aubert, G., Barlaud, M.: Deterministic edge-preserving regularization in computed imaging. IEEE Trans. Image Process. 6(2), 298–311 (1997)
Dell, H.: Seed points in PDE-driven interpolation. Bachelor’s Thesis, Dept. of Computer Science, Saarland University, Saarbrücken, Germany (2006)
Demaret, L., Dyn, N., Iske, A.: Image compression by linear splines over adaptive triangulations. Signal Process. 86(7), 1604–1616 (2006)
Desai, U.Y., Mizuki, M.M., Masaki, I., Horn, B.K.P.: Edge and mean based image compression. Technical Report 1584 (A.I. Memo), Artificial Intelligence Lab., Massachusetts Institute of Technology, Cambridge, MA, USA, November 1996
Distasi, R., Nappi, M., Vitulano, S.: Image compression by B-tree triangular coding. IEEE Trans. Commun. 45(9), 1095–1100 (1997)
Duchon, J.: Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. RAIRO Math. Models Methods Appl. Sci. 10, 5–12 (1976)
Durand, S., Nikolova, M.: Restoration of wavelet coefficients by minimizing a specially designed objective function. In: Faugeras, O., Paragios, N. (eds.) Proc. Second IEEE Workshop on Geometric and Level Set Methods in Computer Vision, Nice, France, October 2003. INRIA, Roequencourt (2003)
Elder, J.H.: Are edges incomplete? Int. J. Comput. Vis. 34(2/3), 97–122 (1999)
Facciolo, G., Lecumberry, F., Almansa, A., Pardo, A., Caselles, V., Rougé, B.: Constrained anisotropic diffusion and some applications. In: Proc. 2006 British Machine Vision Conference, vol. 3, pp. 1049–1058. Edinburgh, Scotland, September 2006
Ford, G.E.: Application of inhomogeneous diffusion to image and video coding. In: Proc. 13th Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 926–930. Asilomar, CA, November 1996
Ford, G.E., Estes, R.R., Chen, H.: Scale-space analysis for image sampling and interpolation. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 3, pp. 165–168. San Francisco, CA, March 1992
Franke, R.: Scattered data interpolation: tests of some methods. Math. Comput. 38, 181–200 (1982)
Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.-P.: Towards PDE-based image compression. In: Paragios, N., Faugeras, O., Chan, T., Schnörr, C. (eds.) Variational, Geometric and Level-Set Methods in Computer Vision. Lecture Notes in Computer Science, vol. 3752, pp. 37–48. Springer, Berlin (2005)
Gothandaraman, A., Whitaker, R., Gregor, J.: Total variation for the removal of blocking effects in DCT based encoding. In: Proc. 2001 IEEE International Conference on Image Processing, vol. 2, pp. 455–458. Thessaloniki, Greece, October 2001
Grossauer, H., Scherzer, O.: Using the complex Ginzburg–Landau equation for digital impainting in 2D and 3D. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space Methods in Computer Vision. Lecture Notes in Computer Science, vol. 2695, pp. 225–236. Springer, Berlin (2003)
Horn, B., Schunck, B.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)
Huffman, D.A.: A method for the construction of minimum redundancy codes. Proc. IRE 40, 1098–1101 (1952)
Hummel, R., Moniot, R.: Reconstructions from zero-crossings in scale space. IEEE Trans. Acoust. Speech Signal Process. 37, 2111–2130 (1989)
Iijima, T.: Basic theory on normalization of pattern (in case of typical one-dimensional pattern). Bull. Electrotech. Lab. 26, 368–388 (1962). In Japanese
Johansen, P., Skelboe, S., Grue, K., Andersen, J.D.: Representing signals by their toppoints in scale space. In: Proc. Eighth International Conference on Pattern Recognition, pp. 215–217. Paris, France, October 1986
Kanters, F.M.W., Lillholm, M., Duits, R., Jansen, B.J.P., Platel, B., Florack, L.M.J., ter Haar Romeny, B.M.: On image reconstruction from multiscale top points. In: Kimmel, R., Sochen, N., Weickert, J. (eds.) Scale Space and PDE Methods in Computer Vision. Lecture Notes in Computer Science, vol. 3459, pp. 431–439. Springer, Berlin (2005)
Kopilovic, I., Szirányi, T.: Artifact reduction with diffusion preprocessing for image compression. Opt. Eng. 44(2), 1–14 (2005)
Köstler, H., Stürmer, M., Freundl, C., Rüde, U.: PDE based video compression in real time. Technical Report 07-11, Lehrstuhl für Informatik 10, Univ. Erlangen–Nürnberg, Germany, 2007
Kunt, M., Ikonomopoulos, A., Kocher, M.: Second-generation image-coding techniques. Proc. IEEE 73(4), 549–574 (1985)
Lehmann, T., Gönner, C., Spitzer, K.: Survey: Interpolation methods in medical image processing. IEEE Trans. Med. Imag. 18(11), 1049–1075 (1999)
Lillholm, M., Nielsen, M., Griffin, L.D.: Feature-based image analysis. Int. J. Comput. Vis. 52(2/3), 73–95 (2003)
Liu, D., Sun, X., Wu, F., Li, S., Zhang, Y.-Q.: Image compression with edge-based inpainting. IEEE Trans. Circuits Syst. Video Technol. 17(10), 1273–1286 (2007)
Malgouyres, F., Guichard, F.: Edge direction preserving image zooming: a mathematical and numerical analysis. SIAM J. Numer. Anal. 39(1), 1–37 (2001)
Mallat, S., Zhong, S.: Characterisation of signals from multiscale edges. IEEE Trans. Pattern Anal. Mach. Intell. 14, 720–732 (1992)
March, R.: Computation of stereo disparity using regularization. Pattern Recogn. Lett. 8, 181–187 (1988)
Masnou, S., Morel, J.-M.: Level lines based disocclusion. In: Proc. 1998 IEEE International Conference on Image Processing, vol. 3, pp. 259–263. Chicago, IL, October 1998
Meijering, E.: A chronology of interpolation: from ancient astronomy to modern signal and image processing. Proc. IEEE 90(3), 319–342 (2002)
Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press, Oxford (2004)
Mrázek, P.: Nonlinear diffusion for image filtering and monotonicity enhancement. Ph.D. thesis, Czech Technical University, Prague, Czech Republic, June 2001
Nagel, H.-H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 8, 565–593 (1986)
Nielson, G.M., Tvedt, J.: Comparing methods of interpolation for scattered volumetric data. In: Rogers, D.F., Earnshaw, R.A. (eds.) State of the Art in Computer Graphics: Aspects of Visualization, pp. 67–86. Springer, New York (1994)
Pennebaker, W.B., Mitchell, J.L.: JPEG: Still Image Data Compression Standard. Springer, New York (1992)
Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)
Rane, S.D., Sapiro, G., Bertalmio, M.: Structure and texture filling-in of missing image blocks in wireless transmission and compression applications. IEEE Trans. Image Process. 12(3), 296–302 (2003)
Rissanen, J., Langdon, G.G. Jr.: Arithmetic coding. IBM J. Res. Develop. 23(2), 149–162 (1979)
Roussos, A., Maragos, P.: Vector-valued image interpolation by an anisotropic diffusion-projection PDE. In: Sgallari, F., Murli, F., Paragios, N. (eds.) Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 4485, pp. 104–115. Springer, Berlin (2007)
Solé, A., Caselles, V., Sapiro, G., Arandiga, F.: Morse description and geometric encoding of digital elevation maps. IEEE Trans. Image Process. 13(9), 1245–1262 (2004)
Strobach, P.: Quadtree-structured recursive plane decomposition coding of images. IEEE Trans. Signal Process. 39(6), 1380–1397 (1991)
Sullivan, G.J., Baker, R.J.: Efficient quadtree coding of images and video. IEEE Trans. Image Process. 3(3), 327–331 (1994)
Taubman, D.S., Marcellin, M.W. (eds.): JPEG 2000: Image Compression Fundamentals, Standards and Practice. Kluwer, Boston (2002)
Tschumperlé, D., Deriche, R.: Vector-valued image regularization with PDEs: a common framework for different applications. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 506–516 (2005)
Tsuji, H., Sakatani, T., Yashima, Y., Kobayashi, N.: A nonlinear spatio-temporal diffusion and its application to prefiltering in MPEG-4 video coding. In: Proc. 2002 IEEE International Conference on Image Processing, vol. 1, pp. 85–88. Rochester, NY, September 2002
Weickert, J.: Theoretical foundations of anisotropic diffusion in image processing. Computing Suppl. 11, 221–236 (1996)
Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)
Weickert, J., Welk, M.: Tensor field interpolation with PDEs. In: Weickert, J., Hagen, H. (eds.) Visualization and Processing of Tensor Fields, pp. 315–325. Springer, Berlin (2006)
Xie, Z., Franklin, W.R., Cutler, B., Andrade, M.A., Inanc, M., Tracy, D.M.: Surface compression using over-determined Laplacian approximation. In: Luk, F.T. (ed.) Advanced Signal Processing Algorithms, Architectures, and Implementations XVII. Proceedings of SPIE, vol. 5266. SPIE Press, Bellingham (2007)
Xiong, Z.W., Sun, X.Y., Wu, F., Li, S.P.: Image coding with parameter-assistant inpainting. In: Proc. 2007 IEEE International Conference on Image Processing, vol. 2, pp. 369–372. San Antonio, TX, September 2007
Yang, S., Hu, Y.-H.: Coding artifact removal using biased anisotropic diffusion. In: Proc. 1997 IEEE International Conference on Image Processing, vol. 2, pp. 346–349. Santa Barbara, CA, October 1997
Yao, S., Lin, W., Lu, Z., Ong, E.P., Yang, X.: Adaptive nonlinear diffusion processes for ringing artifacts removal on JPEG 2000 images. In: Proc. 2004 IEEE International Conference on Multimedia and Expo, pp. 691–694. Taipei, Taiwan, June 2004
Yokoya, N.: Surface reconstruction directly from binocular stereo images by multiscale-multistage regularization. In: Proc. Eleventh International Conference on Pattern Recognition, vol. 1, pp. 642–646. The Hague, The Netherlands, August 1992
Zeevi, Y., Rotem, D.: Image reconstruction from zero-crossings. IEEE Trans. Acoust. Speech Signal Process. 34, 1269–1277 (1986)
Zimmer, H.: PDE-based image compression using corner information. Master’s thesis, Dept. of Computer Science, Saarland University, Saarbrücken, Germany (2007)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Galić, I., Weickert, J., Welk, M. et al. Image Compression with Anisotropic Diffusion. J Math Imaging Vis 31, 255–269 (2008). https://doi.org/10.1007/s10851-008-0087-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-008-0087-0