Abstract
This paper aims to review current approaches for real-time artificial intelligence-based visual Simultaneous Localization and Mapping (vSLAM) operating in dynamic environments. Through the review of several relatively recent published papers for vSLAM in dynamic environments, an attempt is made to explain the concept of Simultaneous Localization and Mapping (SLAM) and its purpose; identify the general framework for real-time AI-based vSLAM approaches in dynamic environments and highlighting the potential solutions that has been developed and their significant results. All related information regarding this topic was obtained with the intention to answer three main questions. Firstly, how do robots localize and map within an unknown environment? Secondly, how can state-of-the-art vSLAM be modified with an AI algorithm to function within a dynamic environment? And lastly, what level of success has these approaches achieved in developing methods for real-time AI-based vSLAM in dynamic environments? The paper intends to provide readers with a clearer general understanding of SLAM and acts as a road map for steps to move forward in developing viable approaches for real-time vSLAM in dynamic environments based on artificial intelligence.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping (SLAM): part I. IEEE Robot. Autom. Mag. 13, 99–108 (2006)
Dissanayake, G., Huang, S., Wang, Z., Ranasinghe, R.: A review of recent developments in simultaneous localization and mapping. In: 2011 6th International Conference on Industrial and Information Systems, pp. 477–482 (2011). https://doi.org/10.1109/ICIINFS.2011.6038117
Saputra, M.R.U., Markham, A., Trigoni, N.: Visual SLAM and structure from motion in dynamic environments: A survey. ACM Comput. Surv. 51. Epub ahead of print 2018, 1–36 (2019). https://doi.org/10.1145/3177853
Sun, Y., Liu, M., Meng, M.Q.H.: Improving RGB-D SLAM in dynamic environments: a motion removal approach. Robot. Auton. Syst. 89, 110–122 (2017)
Zeng, F., Wang, C., Ge, S.S.: A survey on visual navigation for artificial agents with deep reinforcement learning. IEEE Access. 8, 135426–135442 (2020)
Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., Leonard, J.J.: Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans. Robot. 32, 1309–1332 (2016)
Taketomi, T., Uchiyama, H., Ikeda, S.: Visual SLAM algorithms: a survey from 2010 to 2016. IPSJ Trans. Comput. Vision Appl. 9, 1–11 (2017)
Li, A., Ruan, X., Huang, J., Zhu, X., Wang, F.: Review of vision-based simultaneous localization and mapping. In: 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), pp. 117–123 (2019). https://doi.org/10.1109/ITNEC.2019.8729285
Bresson, G., Alsayed, Z., Yu, L., Glaser, S.: Simultaneous localization and mapping: a survey of current trends in autonomous driving. IEEE Trans. Intell. Veh. 2, 194–220 (2017)
Singandhupe, A., La, H.M.: A review of SLAM techniques and security in autonomous driving. Third IEEE International Conference on Robotic Computing (IRC). 2019, 602–607 (2019). https://doi.org/10.1109/IRC.2019.00122
Panchpor, A.A., Shue, S., Conrad, J.M.: A survey of methods for mobile robot localization and mapping in dynamic indoor environments. Conference on Signal Processing And Communication Engineering Systems (SPACES). 2018, 138–144 (2018). https://doi.org/10.1109/SPACES.2018.8316333
Agunbiade, O., Zuva, T.: Simultaneous localization and mapping in application to autonomous robot. 2018 Int Conf Intell Innov Comput Appl ICONIC 2018. Epub ahead of print 2019. https://doi.org/10.1109/ICONIC.2018.8601094
Azzam, R., Taha, T., Huang, S., Zweiri, Y.: Feature-based visual simultaneous localization and mapping: a survey. SN Appl Sci. 2, 1–24 (2020)
Brownlee, J.: A Gentle Introduction to Maximum a Posteriori (MAP) for Machine Learning. Machine Learning Mastery, (2019) https://machinelearningmastery.com/maximum-a-posteriori-estimation/, Accessed 11 March 2021)
Lu, F., Milios, E.: Globally consistent range scan alignment for environment mapping. Auton. Robot. 4, 333–349 (1997)
Gutmann J-S, Konolige K. Incremental mapping of large cyclic environments. Inst. Electr. Electron. Eng. (IEEE), 2003, pp. 318–325
Aulinas, J., Petillot, Y., Salvi, J., et al.: The SLAM problem: a survey. Front Artif Intell Appl. 184, 363–371 (2008)
Thrun, S.: Probabilistic Algorithms in Robotics. AI Mag. 21, 93–109 (2000)
Thrun, S.: Robotic Mapping: A Survey. Science (80). 298, 1–35 (2002)
Stachniss, C., Leonard, J.J., Thrun, S.: Simultaneous Localization and Mapping. In: Springer Handbook of Robotics, pp. 1153–1175. Springer International Publishing (2016)
Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, Vol 8690. Springer, Cham. (2014). https://doi.org/10.1007/978-3-319-10605-2_54
Younes, G., Asmar, D., Shammas, E., Zelek, J.: Keyframe-based monocular SLAM: design, survey, and future directions. Robot. Auton. Syst. 98, 67–88 (2017)
Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: dense tracking and mapping in real-time. International Conference on Computer Vision. 2011, 2320–2327 (2011). https://doi.org/10.1109/ICCV.2011.6126513
Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: Fast semi-direct monocular visual odometry. In: Proceedings - IEEE International Conference on Robotics and Automation. Ins. Electric. Electron. Eng. Inc., 15–22 (2014)
Alismail, H., Browning, B., Lucey, S.: Photometric Bundle Adjustment for Vision-Based SLAM. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 10114 LNCS, 324–341 (2016)
Schops, T., Sattler, T., Pollefeys, M.: Bad SLAM: Bundle Adjusted Direct RGB-D SLAM. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2019, 134–144 (2019)
Zubizarreta, J., Aguinaga, I., Montiel, J.M.M.: Direct sparse mapping. IEEE Trans. Robot. 36, 1363–1370 (2020)
Mao, Z., Zhao, L., Huang, S., et al.: Direct bundle adjustment for 3D image fusion with application to transesophageal echocardiography *. IEEE/RSJ Int Conf Intell Robot Syst. 2021, 548–554 (2021)
Cho, H., Kim, E.K., Kim, S.: Indoor SLAM application using geometric and ICP matching methods based on line features. Robot. Auton. Syst. 100, 206–224 (2018)
Kasyanov, A., Engelmann, F., Stückler, J., Leibe, B.: Keyframe-based visual-inertial online SLAM with relocalization. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2017, 6662–6669 (2017). https://doi.org/10.1109/IROS.2017.8206581
Souto, L.A.V., Nascimento, T.P.: Object subtraction planar RGB-D SLAM. In: 2016 XIII Latin American Robotics Symposium and IV Brazilian Robotics Symposium (LARS/SBR), pp. 19–24 (2016). https://doi.org/10.1109/LARS-SBR.2016.11
Li, J., Meger, D., Dudek, G.: Context-coherent scenes of objects for camera pose estimation. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2017, 655–660 (2017). https://doi.org/10.1109/IROS.2017.8202221
Gawel, A., Del Don, C., Siegwart, R., et al.: X-view: Graph-based semantic Multiview localization. IEEE Robot Autom Lett. 3, 1687–1694 (2018)
Mu, B., Liu, S., Paull, L., Leonard, J., How, J.P.: SLAM with objects using a nonparametric pose graph. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2016, 4602–4609 (2016). https://doi.org/10.1109/IROS.2016.7759677
Yang, S., Song, Y., Kaess, M., Scherer, S.: Pop-up SLAM: semantic monocular plane SLAM for low-texture environments. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2016, 1222–1229 (2016). https://doi.org/10.1109/IROS.2016.7759204
Gálvez-López, D., Salas, M., Tardós, J.D., Montiel, J.M.M.: Real-time monocular object SLAM. Robot. Auton. Syst. 75, 435–449 (2016)
Yang, S., Scherer, S.: Monocular object and plane slam in structured environments. IEEE Robot Autom Lett. 4, 3145–3152 (2019)
Ho, T.S., Fai, Y.C.: Ming, E.S.L.: Simultaneous localization and mapping survey based on filtering techniques. In: 2015 10th Asian Control Conference: Emerging Control Techniques for a Sustainable World, ASCC 2015. Institute of Electrical and Electronics Engineers Inc., (2015). Epub ahead of print 8 September 2015. https://doi.org/10.1109/ASCC.2015.7244836
Ribeiro, M.I.: Kalman and extended kalman filters: concept, derivation and properties. Institute for Systems and Robotics. 43, 46 (2004)
Huang, S., Dissanayake, G.: Convergence and consistency analysis for extended Kalman filter based SLAM. IEEE Trans. Robot. 23, 1036–1049 (2007)
Huang S., Dissanayake G.: Convergence analysis for extended Kalman filter based SLAM. Proceedings 2006 IEEE International Conference on Robotics and Automation. ICRA 2006, vol. 2006, pp. 412–417 (2006). https://doi.org/10.1109/ROBOT.2006.1641746
Bailey, T., Nieto, J., Guivant, J., Stevens, M., Nebot, E.: Consistency of the EKF-SLAM algorithm. IEEE/RSJ International Conference on Intelligent Robots and Systems. 2006, 3562–3568 (2006). https://doi.org/10.1109/IROS.2006.281644
Solà, J.: Consistency of the monocular EKF-SLAM algorithm for three different landmark parametrizations. IEEE International Conference on Robotics and Automation. 2010, 3513–3518 (2010). https://doi.org/10.1109/ROBOT.2010.5509518
Zhang, T., Wu, K., Song, J., Huang, S., Dissanayake, G.: Convergence and consistency analysis for a 3-D invariant-EKF SLAM. IEEE Robot Autom Lett. 2, 733–740 (2017)
Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: MonoSLAM: Real-time single camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 29, 1052–1067 (2007)
Esparza-Jiménez, J.O., Devy, M., Gordillo, J.L.: Visual EKF-SLAM from Heterogeneous Landmarks. Sensors. 16, 489 (2016)
Quan, M., Piao, S., Tan, M., Huang, S.S.: Accurate monocular visual-inertial SLAM using a map-assisted EKF approach. IEEE Access. 7, 34289–34300 (2019)
Zhou, H., Zou, D., Pei, L., Ying, R., Liu, P., Yu, W.: StructSLAM: visual SLAM with building structure lines. IEEE Trans. Veh. Technol. 64, 1364–1375 (2015)
Yuan, W., Li, Z., Su, C.: RGB-D sensor-based visual SLAM for localization and navigation of indoor mobile robot. International Conference on Advanced Robotics and Mechatronics (ICARM). 2016, 82–87 (2016). https://doi.org/10.1109/ICARM.2016.7606899
van der Merwe, R., Doucet, A., De Freitas, N., et al.: A tutorial on particle filtering and smoothing. Handb Nonlinear Filter. 12, 656–704 (2009)
Gustafsson, F., Gunnarsson, F., Bergman, N., Forssell, U., Jansson, J., Karlsson, R., Nordlund, P.J.: Particle filters for positioning, navigation, and tracking. IEEE Trans. Signal Process. 50, 425–437 (2002)
Gustafsson, F.: Particle filter theory and practice with positioning applications. IEEE Aerosp. Electron. Syst. Mag. 25, 53–81 (2010)
Karlsson, N., Di Bernardo, E., Ostrowski, J., et al.: The vSLAM algorithm for robust localization and mapping. Proc - IEEE Int Conf Robot Autom. 2005, 24–29 (2005)
Hee Won, D., Chun, S., Sung, S., et al.: INS/vSLAM system using distributed particle filter. Int. J. Control. Autom. Syst. 8, 1232–1240 (2010)
Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: a factored solution to the simultaneous localization and mapping problem. Proceedings of the Eighteenth National Conference on Artificial Intelligence. 593–598 (2002)
Carlone, L., Du, J., Kaouk Ng, M., et al.: ActiveSLAM and exploration with particle filters using Kullback-Leibler divergence. J Intell Robot Syst Theory Appl. 75, 291–311 (2014)
Chan, S.-H., Wu, P.-T., Fu, L.-C.: Robust 2D indoor localization through laser SLAM and visual SLAM fusion. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1263–1268 (2018). https://doi.org/10.1109/SMC.2018.00221
Farrokhsiar, M., Najjaran, H.: Rao-Blackwellized particle filter approach to monocular vSLAM with a modified initialization scheme. Proc ASME Des Eng Tech Conf. 3, 427–433 (2010)
Farrokhsiar, M., Najjaran, H.: A higher order Rao-Blackwellized particle filter for monocular vSLAM. In: Proceedings of the 2010 American Control Conference, pp. 6987–6992 (2010). https://doi.org/10.1109/ACC.2010.5531347
Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). https://doi.org/10.1109/ISMAR.2007.4538852
Strasdat, H., Montiel, J.M.M., Davison, A.J.: Visual SLAM: Why filter? Image Vis. Comput. 30, 65–77 (2012)
Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Trans. Robot. 31, 1147–1163 (2015)
Mur-Artal, R., Tardos, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33, 1255–1262 (2017)
Campos Martínez C, Elvira R, Gómez Rodríguez JJ, et al. ORB-SLAM3: An accurate Open-source library for visual, Visual-inertial and Multi-map SLAM. arXiv. Epub ahead of print 2020. https://doi.org/10.1109/TRO.2021.3075644
Shin, Y., Park, Y.S., Kim, A.: Direct visual SLAM using sparse depth for camera-LiDAR system. IEEE International Conference on Robotics and Automation (ICRA). 2018, 5144–5151 (2018). https://doi.org/10.1109/ICRA.2018.8461102
Chen, S., Zhou, B., Jiang, C., et al.: A LiDAR/Visual SLAM Backend with Loop Closure Detection and Graph Optimization. Remote Sens. 13, 2720 (2021)
Grisetti, G., Kümmerle, R., Stachniss, C., et al.: A tutorial on Graph based SLAM. Aerospace. 2, 31–43 (2010)
Sünderhauf, N., Protzel, P.: Towards a robust back-end for pose graph SLAM. IEEE International Conference on Robotics and Automation. 2012, 1254–1261 (2012). https://doi.org/10.1109/ICRA.2012.6224709
Mendes, E., Koch, P., Lacroix, S.. ICP-based pose-graph SLAM. In: SSRR 2016 - International Symposium on Safety, Security and Rescue Robotics. Institute of Electrical and Electronics Engineers Inc., pp. 195–200 (2016)
Pumarola, A., Vakhitov, A., Agudo, A., et al.: PL-SLAM: real-time monocular visual SLAM with points and lines. Proc - IEEE Int Conf Robot Autom, 4503–4508 (2017)
Tateno, K., Tombari, F., Laina, I., Navab, N.: CNN-SLAM: real-time dense monocular SLAM with learned depth prediction. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017, 6565–6574 (2017). https://doi.org/10.1109/CVPR.2017.695
Wang, R., Wan, W., Wang, Y., et al.: A new RGB-D SLAM method with moving object detection for dynamic indoor scenes. Remote Sens. 11. Epub ahead of print 2019. https://doi.org/10.3390/rs11101143
Wang, C., Luo, B., Zhang, Y., Zhao, Q., Yin, L., Wang, W., Su, X., Wang, Y., Li, C.: DymSLAM: 4D dynamic scene reconstruction based on geometrical motion segmentation. IEEE Robot Autom Lett. 6, 550–557 (2021)
Thrun, S., Montemerlo, M.: The Graph SLAM Algorithm with applications to large-scale mapping of urban structures. Int. J. Robot. Res. 25, 403–429 (2006)
Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment — a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) Vision Algorithms: Theory and Practice. IWVA 1999. Lecture Notes in Computer Science, Vol 1883. Springer, Berlin, Heidelberg (2000). https://doi.org/10.1007/3-540-44480-7_21
Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics | The MIT Press. MIT Press, https://mitpress.mit.edu/books/probabilistic-robotics.(2005), Accessed 27 March 2021) (2021)
Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J.J., Dellaert, F.: iSAM2: incremental smoothing and mapping using the Bayes tree. Int. J. Robot. Res. 31, 216–235 (2012)
Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., Sayd, P.: Real time localization and 3D reconstruction. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), pp. 363–370 (2006). https://doi.org/10.1109/CVPR.2006.236
Kalogeiton, V.S., Ioannidis, K., Sirakoulis, G.C., et al.: Real-Time Active SLAM and Obstacle Avoidance for an Autonomous Robot Based on Stereo Vision. Cybern Syst. 50, 239–260 (2019). https://doi.org/10.1080/0196972220181541599
Hachiuma, R., Pirchheim, C., Schmalstieg, D., Saito, H.: DetectFusion: detecting and segmenting both known and unknown dynamic objects in real-time slam. In: Paper Presented at 30th British Machine Vision Conference, BMVC 2019. United Kingdom, Cardiff (2020)
Kelly, J., E.: Computing, cognition and the future of knowing (whitepaper). IBM Corporation. (2015)
Moore, M.: What is Industry 4.0? Everything you need to know | TechRadar. (2018). Techradar.com, https://www.techradar.com/news/what-is-industry-40-everything-you-need-to-know, (Accessed 24 August 2021)
Chen C, Wang B, Xiaoxuan Lu C, et al. A Survey on Deep Learning for Localization and Mapping: Towards the Age of Spatial Machine Intelligence. arXiv, http://arxiv.org/abs/2006.12567 (2020), (Accessed 29 October 2020)
Wangsiripitak, S., Murray, D.W.: Avoiding moving outliers in visual SLAM by tracking moving objects. IEEE International Conference on Robotics and Automation. 2009, 375–380 (2009). https://doi.org/10.1109/ROBOT.2009.5152290
Lin, K., Wang, C.: Stereo-based simultaneous localization, mapping and moving object tracking. IEEE/RSJ International Conference on Intelligent Robots and Systems. 2010, 3975–3980 (2010). https://doi.org/10.1109/IROS.2010.5649653
Lin, T.-H., Wang, C.-C.: Deep learning of spatio-temporal features with geometric-based moving point detection for motion segmentation. IEEE International Conference on Robotics and Automation (ICRA). 2014, 3058–3065 (2014). https://doi.org/10.1109/ICRA.2014.6907299
Sabzevari, R., Scaramuzza, D.: Monocular simultaneous multi-body motion segmentation and reconstruction from perspective views. IEEE International Conference on Robotics and Automation (ICRA). 2014, 23–30 (2014). https://doi.org/10.1109/ICRA.2014.6906585
Zhang, T., Szlam, A., Lerman, G.: Median K-flats for hybrid linear modeling with many outliers. In: 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pp. 234–241 (2009). https://doi.org/10.1109/ICCVW.2009.5457695
Byravan, A., Fox, D.: SE3-nets: learning rigid body motion using deep neural networks. IEEE International Conference on Robotics and Automation (ICRA). 2017, 173–180 (2017). https://doi.org/10.1109/ICRA.2017.7989023
Kundu, A., Krishna, K.M., Jawahar, C.V.. Realtime multibody visual SLAM with a smoothly moving monocular camera. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2080–2087 (2011)
Park, H.S., Shiratori, T., Matthews, I., Sheikh, Y.: 3D trajectory reconstruction under perspective projection. Int. J. Comput. Vis. 115, 115–135 (2015)
Zappella, L., Del Bue, A., Lladó, X., et al.: Joint estimation of segmentation and structure from motion. Comput. Vis. Image Underst. 117, 113–129 (2013)
Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2481–2495 (2017)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 2, pp. 386–397 (2020). https://doi.org/10.1109/TPAMI.2018.2844175
Urzua, S., Munguía, R., Grau, A.: Vision-based SLAM system for MAVs in GPS-denied environments. Int J Micro Air Veh. 9, 283–296 (2017)
Lowe, T., Kim, S., Cox, M.: Complementary perception for handheld SLAM. IEEE Robot Autom Lett. 3, 1104–1111 (2018)
Maity, S., Saha, A., Bhowmick, B.: Edge SLAM: edge points based monocular visual SLAM. IEEE International Conference on Computer Vision Workshops (ICCVW). 2017, 2408–2417 (2017). https://doi.org/10.1109/ICCVW.2017.284
Zhang, A.S., Liu, B.S., Zhang, C.J., Wang, D.Z., Wang, E.X.: Fast initialization for feature-based monocular slam. IEEE International Conference on Image Processing (ICIP). 2017, 2119–2123 (2017). https://doi.org/10.1109/ICIP.2017.8296656
Civera, J., Galvez-Lopez, D., Riazuelo, L., et al.: Towards semantic SLAM using a monocular camera. Inst. Electr. Electron. Eng. (IEEE), 1277–1284 (2011)
Brasch, N., Bozic, A., Lallemand, J., et al.: Semantic monocular SLAM for highly dynamic environments. IEEE Int Conf Intell Robot Syst, 393–400 (2018)
Vogiatzis, G., Hernández, C.: Video-based, real-time multi-view stereo. Image Vis. Comput. 29, 434–441 (2011)
Xiao, L., Wang, J., Qiu, X., Rong, Z., Zou, X.: Dynamic-SLAM: semantic monocular visual localization and mapping based on deep learning in dynamic environment. Robot. Auton. Syst. 117, 1–16 (2019)
Bescos, B., Facil, J.M., Civera, J., Neira, J.: DynaSLAM: tracking, mapping, and Inpainting in dynamic scenes. IEEE Robot Autom Lett. 3, 4076–4083 (2018)
Zhong, F., Wang, S., Zhang, Z., Chen, C., Wang, Y.: Detect-SLAM: making object detection and SLAM mutually beneficial. IEEE Winter Conference on Applications of Computer Vision (WACV). 2018, 1001–1010 (2018). https://doi.org/10.1109/WACV.2018.00115
Yu, C., Liu, Z., Liu, X.J., et al.: DS-SLAM: a semantic visual SLAM towards dynamic environments. IEEE Int Conf Intell Robot Syst, 1168–1174 (2018)
Cui, L., Ma, C.: SDF-SLAM: semantic depth filter SLAM for dynamic environments. IEEE Access. 8, 95301–95311 (2020)
Cui, L., Ma, C.: SOF-SLAM: a semantic visual SLAM for dynamic environments. IEEE Access. 7, 166528–166539 (2019)
Zhang, L., Wei, L., Shen, P., Wei, W., Zhu, G., Song, J.: Semantic SLAM based on object detection and improved octomap. IEEE Access. 6, 75545–75559 (2018)
Zhao, L., Liu, Z., Chen, J., Cai, W., Wang, W., Zeng, L.: A compatible framework for RGB-D SLAM in dynamic scenes. IEEE Access. 7, 75604–75614 (2019)
Long, X., Zhang, W., Zhao, B.: PSPNet-SLAM: a semantic SLAM detect dynamic object by pyramid scene parsing network. IEEE Access. 8, 214685–214695 (2020)
Bao, A.Y., Rui, T., Qiang, Y.X., et al.: Visual SLAM in dynamic environments based on object detection. Def Technol. Epub ahead of print 24 September 2020. (2021). https://doi.org/10.1016/j.dt.2020.09.012
Cheng, J., Wang, Z., Zhou, H., Li, L., Yao, J.: DM-SLAM: a feature-based SLAM system for rigid dynamic scenes. ISPRS Int J Geo-Inf. 9, 1–18 (2020)
Liu, Y., Miura, J.: RDS-SLAM: real-time dynamic SLAM using semantic segmentation methods. IEEE Access. 9, 23772–23785 (2021)
Fan, Y., Fan, Y., Zhang, Q., et al.: Semantic SLAM with more accurate point cloud map in dynamic environments. IEEE Access. 8, 112237–112252 (2020)
Ji, T., Wang, C., Xie, L.: Towards Real-time Semantic RGB-D SLAM in Dynamic Environments. pp. 11175–11181
Li, A., Wang, J., Xu, M., Chen, Z.: DP-SLAM: a visual SLAM with moving probability towards dynamic environments. Inf Sci (Ny). 556, 128–142 (2021)
Qin, T., Li, P., Shen, S.: VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. IEEE Trans. Robot. 34, 1004–1020 (2018)
Zhao, X., Wang, C., Ang, M.H.: Real-time visual-inertial localization using semantic segmentation towards dynamic environments. IEEE Access. 8, 155047–155059 (2020)
Cortes, S., Solin, A., Rahtu, E., et al.: ADVIO: An Authentic Dataset for Visual-Inertial Odometry. 419–434 (2018)
Whaley, S.: What is Frame Rate and Why is it Important to PC Gaming?, (2018) https://www.hp.com/us-en/shop/tech-takes/what-is-frame-rate, (Accessed 4 September 2021)
Read, P., Meyer, M.-P.: Restoration of Motion Picture Film, (2000). https://books.google.ae/books?hl=en&lr=&id=jzbUUL0xJAEC&oi=fnd&pg=PP1&dq=Read,+Paul%3B+Meyer,+Mark-Paul%3B+Gamma+Group+(2000).+Restoration+of+motion+picture+film&ots=orlihkxMBR&sig=RFItd8lo1LfvN5uLxi9puN-3FJo&redir_esc=y#v=onepage&q=Read%252C.Paul%253B Meyer%25, (Accessed 4 September 2021)
Brownlow, K.: Silent Films: What Was the Right Speed?, (1980) https://web.archive.org/web/20110708155615/http://www.cinemaweb.com/silentfilm/bookshelf/18_kb_2.htm, (Accessed 4 September 2021)
Armstrong, M.G., Flynn, D.J., Hammond, M.E., Jolly, S.J.E., Salmon, R.A.: High frame-rate television. SMPTE Motion Imaging J. 118, 54–58 (2009)
Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv, (2020) http://arxiv.org/abs/2004.10934, (Accessed 12 May 2021) (2021)
Soares, J.C.V., Gattass, M., Meggiolaro, M.A.: Visual SLAM in human populated environments: exploring the trade-off between accuracy and speed of YOLO and mask R-CNN. In: 2019 19th International Conference on Advanced Robotics (ICAR), pp. 135–140 (2019). https://doi.org/10.1109/ICAR46387.2019.8981617
Dong, G., Yan, Y., Shen, C., Wang, H.: Real-time high-performance semantic image segmentation of urban street scenes. IEEE Trans. Intell. Transp. Syst. 22, 3258–3274 (2021)
Javed, Z., Kim, G.: A comparative study of recent real time semantic segmentation algorithms for visual semantic SLAM. IEEE International Conference on Big Data and Smart Computing (BigComp). 2020, 474–476 (2020). https://doi.org/10.1109/BigComp48618.2020.00-22
Kyrkou, C., Theocharides, T.: EmergencyNet: efficient aerial image classification for drone-based emergency monitoring using Atrous convolutional feature fusion. IEEE J Sel Top Appl Earth Obs Remote Sens. 13, 1687–1699 (2020)
Everingham, M., Van Gool, L., Williams, C.K.I., et al.: The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. 88, 303–338 (2009)
Lin, TY. et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture notes in computer science, vol 8693. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Schneider, T., Dymczyk, M., Fehr, M., Egger, K., Lynen, S., Gilitschenski, I., Siegwart, R.: Maplab: an open framework for research in visual-inertial mapping and localization. IEEE Robot Autom Lett. 3, 1418–1425 (2018)
Mur-Artal, R., Tardos, J.D.: Visual-inertial monocular SLAM with map reuse. IEEE Robot Autom Lett. 2, 796–803 (2017)
Zhao, H., Qi, X., Shen, X., et al.: ICNet for Real-Time Semantic Segmentation on High-Resolution Images, (2018) https://github.com/hszhao/ICNet, (Accessed 23 May 2021) (2021)
Cordts M, Omran M, Ramos S, et al. The Cityscapes Dataset for Semantic Urban Scene Understanding, www.cityscapes-dataset.net (2016, accessed 23 May 2021) (2016)
Gaidon, A., Wang, Q., Cabon, Y., et al. Virtual Worlds as Proxy for Multi-Object Tracking Analysis, (2016) http://www.xrce.xerox.com/, (Accessed 23 May 2021)
Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The SYNTHIA dataset: a large collection of synthetic images for semantic segmentation of urban scenes. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016, 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352
Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9905. Springer, Cham (2016) https://doi.org/10.1007/978-3-319-46448-0_2
Chen, L.-C., Zhu, Y., Papandreou, G., et al.: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation, (2018) https://github.com/tensorflow/models/tree/master/ Accessed 23 May 2021)
Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. IEEE/RSJ International Conference on Intelligent Robots and Systems. 2012, 573–580 (2012). https://doi.org/10.1109/IROS.2012.6385773
Geiger, A., Lenz, P., Stiller, C., et al.: Vision meets robotics. The KITTI dataset. https://doi.org/10.1177/0278364913491297 Epub ahead of print 23 August 2013
Baker, S., Matthews, I.: Lucas-Kanade 20 years on: a unifying framework. Int. J. Comput. Vis. 56, 221–255 (2004)
Availability of Data and Material
Not Applicable.
Code Availability
Not Applicable.
Funding
This work was supported by the United Arab Emirates University's Research Start-Up Grant (G00003527).
Author information
Authors and Affiliations
Contributions
The idea for the article, its literature search and analysis along with its eventual draft was done by Aizat Aasim. While extensive critical review of the work done was handled equally between Mohamed Okasha and Waleed Fekry Faris.
Corresponding author
Ethics declarations
Ethics Approval
Not Applicable.
Conflicts of Interest/Competing Interests
All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.
Consent to Participate
Not Applicable.
Consent for Publication
Not Applicable.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wan Aasim, W.F.A., Okasha, M. & Faris, W.F. Real-Time Artificial Intelligence Based Visual Simultaneous Localization and Mapping in Dynamic Environments – a Review. J Intell Robot Syst 105, 15 (2022). https://doi.org/10.1007/s10846-022-01643-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10846-022-01643-y