Towards Automated 3D Search Planning for Emergency Response Missions | Journal of Intelligent & Robotic Systems Skip to main content

Advertisement

Log in

Towards Automated 3D Search Planning for Emergency Response Missions

  • Regular Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Theability to efficiently plan and execute automated and precise search missions using unmanned aerial vehicles (UAVs) during emergency response situations is imperative. Precise navigation between obstacles and time-efficient searching of 3D structures and buildings are essential for locating survivors and people in need in emergency response missions. In this work we address this challenging problem by proposing a unified search planning framework that automates the process of UAV-based search planning in 3D environments. Specifically, we propose a novel search planning framework which enables automated planning and execution of collision-free search trajectories in 3D by taking into account low-level mission constrains (e.g., the UAV dynamical and sensing model), mission objectives (e.g., the mission execution time and the UAV energy efficiency) and user-defined mission specifications (e.g., the 3D structures to be searched and minimum detection probability constraints). The capabilities and performance of the proposed approach are demonstrated through extensive simulated 3D search scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Code availability

The code is available at https://github.com/savvas-papaioannou/3dsearchplanning.

References

  1. de Alcantara Andrade, F.A., Reinier Hovenburg, A., Netto de Lima, L., Dahlin Rodin, C., Johansen, T.A., Storvold, R., Moraes Correia, C.A., Barreto Haddad, D.: Autonomous unmanned aerial vehicles in search and rescue missions using Real-Time cooperative model predictive control. Sensors 19(19) (2019)

  2. Archibald, B., Maier, P., McCreesh, C., Stewart, R., Trinder, P.: Replicable parallel branch and bound search. J. Parallel Distrib. Comput. 113, 92–114 (2018)

    Article  Google Scholar 

  3. Berger, J., Lo, N.: An Innovative Multi-agent Search-and-rescue Path Planning Approach. Comput. Oper. Res. 53, 24–31 (2015)

    Article  MathSciNet  Google Scholar 

  4. Birk, A., Wiggerich, B., Bülow, H., Pfingsthorn, M., Schwertfeger, S.: Safety, security, and rescue missions with an unmanned aerial vehicle (uav). J. Intell. Robot. Syst. 64(1), 57–76 (2011)

    Article  Google Scholar 

  5. Bitton, E., Goldberg, K.: Hydra: A Framework and Algorithms for Mixed-initiative UAV-assisted Search and Rescue. In: 2008 IEEE International Conference on Automation Science and Engineering. IEEE, pp 61–66 (2008)

  6. Bortoff, S.A.: Path Planning for UAVs. In: Proceedings of the 2000 American Control Conference (ACC) , IEEE, vol. 1, pp 364–368 (2000)

  7. Center for Strategy & Evaluation Services: Evaluation Study of Definitions Gaps and Costs of Response Capacities for the Union Civil Protection Mechanism. D7, Final Report (2019)

    Google Scholar 

  8. Colas, F, Mahesh, S., Pomerleau, F., Liu, M., Siegwart, R.: 3D Path Planning and Execution for Search and Rescue Ground Robots. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 722–727 (2013)

  9. Cyprus Civil Defense: Report on Disaster Risk Management in the Republic of Cyprus (2020)

  10. Dubé, R, Gawel, A., Cadena, C., Siegwart, R., Freda, L., Gianni, M.: 3D Localization, Mapping and Path Planning for Search and Rescue Operations. IEEE (2016)

  11. Elf, M., Gutwenger, C., Jünger, M., Rinaldi, G.: Branch-and-cut Algorithms for Combinatorial Optimization and Their Implementation in ABACUS, pp. 157–222. Springer, Berlin (2001)

  12. Erdelj, M., Natalizio, E.: Uav-assisted disaster management: Applications and open issues. In: 2016 International Conference on Computing, Networking and Communications (ICNC), pp 1–5 (2016)

  13. Erdos, D., Erdos, A., Watkins, S.E.: An experimental uav system for search and rescue challenge. IEEE Aerosp. Electron. Syst. Mag. 28(5), 32–37 (2013)

    Article  Google Scholar 

  14. Gawel, A., Dubé, R, Surmann, H., Nieto, J., Siegwart, R., Cadena, C.: 3D Registration of Aerial and Ground Robots for Disaster Response: An Evaluation of Features, Descriptors, and Transformation Estimation. In: 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), pp 27–34. IEEE (2017)

  15. Goodrich, M.A., Morse, B.S., Gerhardt, D., Cooper, J.L., Quigley, M., Adams, J.A., Humphrey, C.: Supporting Wilderness Search and Rescue using a Camera-equipped mini UAV. J. Field Robot. 25(1-2), 89–110 (2008)

    Article  Google Scholar 

  16. Han, X.A., Ma, Y., Huang, X.: The cubic trigonometric bézier curve with two shape parameters. Appl. Math. Lett. 22(2), 226–231 (2009)

    Article  MathSciNet  Google Scholar 

  17. International Forum to Advance First Responder Innovation. Statement of Objectives of Capability Gaps (White paper) (2019)

  18. Kannan, R., Monma, C.L.: On the Computational Complexity of Integer Programming Problems. In: Henn, R., Korte, B., Oettli, W. (eds.) Optimization and Operations Research, Springer Berlin Heidelberg, pp 161–172, Berlin (1978)

  19. Kruijff, G.J.M., Pirri, F., Gianni, M., Papadakis, P., Pizzoli, M., Sinha, A., Tretyakov, V., Linder, T., Pianese, E., Corrao, S., et al.: Rescue Robots at Earthquake-Hit Mirandola, Italy: a Field Report. In: 2012 IEEE international symposium on safety, security, and rescue robotics (SSRR), pp. 1–8. IEEE (2012)

  20. Yang, K., Sukkarieh, S: 3D Smooth Path Planning for a UAV in Cluttered Natural Environments. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 794–800 (2008)

  21. LaValle, S.M., Kuffner, J.J., Donald, B., et al.: Rapidly-exploring Random Trees: Progress and Prospects. Algorithmic and Computational Robotics: New Directions (5), 293–308 (2001)

  22. Lin, X, Hou, ZJ, Ren, H, Pan, F.: Approximate mixed-integer programming solution with machine learning technique and linear programming relaxation. In: 2019 3rd International Conference on Smart Grid and Smart Cities (ICSGSC), pp 101–107 (2019)

  23. Luis, C.E., Vukosavljev, M., Schoellig, A.P.: Online trajectory generation with distributed model predictive control for multi-robot motion planning. IEEE Robot. Autom. Lett. 5(2), 604–611 (2020). https://doi.org/10.1109/LRA.2020.2964159

    Article  Google Scholar 

  24. Mac, T.T., Copot, C., Tran, D.T., De Keyser, R.: Heuristic approaches in robot path planning: a survey. Robot. Auton. Syst. 86, 13–28 (2016)

    Article  Google Scholar 

  25. McMahon, J., Plaku, E.: Mission and motion planning for autonomous underwater vehicles operating in spatially and temporally complex environments. IEEE J. Ocean. Eng. 41(4), 893–912 (2016). https://doi.org/10.1109/JOE.2015.2503498

    Article  Google Scholar 

  26. Morrison, D.R., Jacobson, S.H., Sauppe, J.J., Sewell, E.C.: Branch-and-bound algorithms: a survey of recent advances in searching, branching, and pruning. Discret. Optim. 19, 79–102 (2016)

    Article  MathSciNet  Google Scholar 

  27. Munguía, L.M., Oxberry, G., Rajan, D., Shinano, Y.: Parallel pips-sbb: multi-level parallelism for stochastic mixed-integer programs. Comput. Optim. Appl. 73(2), 575–601 (2019)

    Article  MathSciNet  Google Scholar 

  28. Murphy, R.R.: International cooperation in deploying robots for disasters: Lessons for the future from the great east Japan earthquake. J. Robot. Soc. Jpn. 32(2), 104–109 (2014)

    Article  Google Scholar 

  29. Murphy, R.R., Pratt, K.S., Burke, J.L.: Crew roles and operational protocols for rotary-wing micro-uavs in close urban environments. In: 2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 73–80. https://doi.org/10.1145/1349822.1349833 (2008)

  30. Nucamendi-Guillén, S.s, Martínez-salazar, I, Angel-Bello, F., Moreno-Vega, J.M.: A mixed integer formulation and an efficient metaheuristic procedure for the k-travelling repairmen problem. J. Oper. Res. Soc. 67(8), 1121–1134 (2016)

    Article  Google Scholar 

  31. Nuchter, A., Lingemann, K., Hertzberg, J.: Mapping of rescue environments with Kurt3D. In: IEEE International Safety, Security and Rescue Rototics, Workshop, pp. 158–163.s IEEE (2005)

  32. Papaioannou, S, Kolios, P., Theocharides, T., Panayiotou, C.G., Polycarpou, M.M.: Decentralized search and track with multiple autonomous agents. In: 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 909–915. https://doi.org/10.1109/CDC40024.2019.9029236 (2019a)

  33. Papaioannou, S, Kolios, P., Theocharides, T., Panayiotou, C.G., Polycarpou, M.M.: Probabilistic search and track with multiple mobile agents. In: 2019 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 253–262. https://doi.org/10.1109/ICUAS.2019.8797831 (2019b)

  34. Papaioannou, S., Kolios, P., Theocharides, T., Panayiotou, C.G., Polycarpou, M.M.: A cooperative multi-agent probabilistic framework for search and track missions. IEEE Transactions on Control of Network Systems, 1–1. https://doi.org/10.1109/TCNS.2020.3038843 (2020)

  35. Papaioannou, S., Kolios, P., Theocharides, T., Panayiotou, C.G., Polycarpou, M.M.: Jointly-optimized searching and tracking with random finite sets. IEEE Trans. Mob. Comput. 19(10), 2374–2391 (2020). https://doi.org/10.1109/TMC.2019.2922133

    Article  Google Scholar 

  36. Papaioannou, S, Kolios, P, Theocharides, T, Panayiotou, CG, Polycarpou, MM: 3d trajectory planning for uav-based search missions: An Integrated Assessment and Search Planning Approach. In: Proceedings of the 2021 International Conference on Unmanned Aircraft Systems (ICUAS) (2021)

  37. Pathak, K., Birk, A., Vaskevicius, N., Pfingsthorn, M., Schwertfeger, S., Poppinga, J.: Online three-dimensional slam by registration of large planar surface segments and closed-form pose-graph relaxation. J. Field Robot. 27(1), 52–84 (2010)

    Article  Google Scholar 

  38. Petrides, P, Kyrkou, C., Kolios, P., Theocharides, T., Panayiotou, C.: Towards a holistic performance evaluation framework for drone-based object detection. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1785–1793 (2017)

  39. Półka M, Ptak S, Kuziora, Ł: The use of uav’s for search and rescue operations. Procedia Eng. 192, 748–752. 12th international scientific conference of young scientists on sustainable, modern and safe transport (2017)

  40. Plaku, E., Le, D.: Interactive search for action and motion planning with dynamics. J. Exper. Theor. Artif. Intell. 28(5), 849–869 (2016). https://doi.org/10.1080/0952813X.2016.1146348

    Article  Google Scholar 

  41. Prentice, S., Roy, N.: The belief roadmap: Efficient planning in belief space by factoring the covariance. Int. J. Robot. Res. 28(11-12), 1448–1465 (2009). https://doi.org/10.1177/0278364909341659

    Article  Google Scholar 

  42. Ralphs, T., Shinano, Y., Berthold, T., Koch, T.: Parallel solvers for mixed integer linear optimization. In: Handbook of parallel constraint reasoning, pp, 283–336. Springer (2018)

  43. He, R., Prentice, S., Roy, N.: Planning in Information Space for a Quadrotor Helicopter in a GPS-denied environment. In: 2008 IEEE International Conference on Robotics and Automation, pp 1814–1820 (2008)

  44. San Juan, V., Santos, M., Andújar, J.M.: Intelligent UAV map generation and discrete path planning for search and rescue operations. Complexity 2018 (2018)

  45. Scherer, J., Yahyanejad, S., Hayat, S., Yanmaz, E., Andre, T., Khan, A., Vukadinovic, V., Bettstetter, C., Hellwagner, H., Rinner, B.: An autonomous multi-uav system for search and rescue. In: Proceedings of the First Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use, pp. 33–38 (2015)

  46. Silvagni, M., Tonoli, A., Zenerino, E., Chiaberge, M.: Multipurpose uav for search and rescue operations in mountain avalanche events. Geomatics Nat. Hazards Risk 8(1), 18–33 (2017)

    Article  Google Scholar 

  47. Terzi, M., Anastasiou, A., Kolios, P., Panayiotou, C., Theocharides, T., 2019A: Swifters: A multi-uav platform for disaster management. In: Proceedings of the 6th International Conference on Information and Communication Technologies for Disaster Management (ICT-DM) (2019)

  48. Terzi, M., Kolios, P., Panayiotou, C., Theocharides, T.: A unified framework for reliable multi-drone tasking in emergency response missions. In: 2019 International Conference on Unmanned Aircraft Systems (ICUAS), pp 819–827, https://doi.org/10.1109/ICUAS.2019.8798071 (2019b)

  49. The Office of the United Nations High Commissioner for Refugees. UNHCR’s Handbook for Emergencies (2015)

  50. Tisdale, J., Kim, Z., Hedrick, J.K.: Autonomous UAV path planning and estimation. IEEE Robot. Autom. Mag. 16(2), 35–42 (2009)

    Article  Google Scholar 

  51. Tomic, T., Schmid, K., Lutz, P., Domel, A., Kassecker, M., Mair, E., Grixa, I.L., Ruess, F., Suppa, M., Burschka, D.: Toward a fully autonomous uav: Research platform for indoor and outdoor urban search and rescue. IEEE Robot. Autom. Mag. 19(3), 46–56 (2012). https://doi.org/10.1109/MRA.2012.2206473

    Article  Google Scholar 

  52. Tu, J., Yang, S.X.: Genetic Algorithm Based Path Planning for a Mobile Robot. In: 2003 IEEE International Conference on Robotics and Automation, vol. 1, pp 1221–1226. IEEE (2003)

  53. United Nations Office for the Coordination of Humanitarian Affairs, International Search and Rescue Advisory Group. Guidelines and Methodology (2012)

  54. Wallar, A., Plaku, E., Sofge, D.A.: Reactive motion planning for unmanned aerial surveillance of risk-sensitive areas. IEEE Trans. Autom. Sci. Eng. 12(3), 969–980 (2015). https://doi.org/10.1109/TASE.2015.2443033

    Article  Google Scholar 

  55. Wang, H., Meng, K., Dong, Z.Y., Xu, Z., Luo, F., Wong, K.P.: Efficient real-time residential energy management through milp based rolling horizon optimization. In: 2015 IEEE Power & Energy Society General Meeting, pp. 1–6. IEEE (2015)

  56. Warren, C.W.: Global Path Planning Using Artificial Potential Fields. In: Proceedings 1989 International Conference on Robotics and Automation, pp. 316–321. IEEE (1989)

Download references

Acknowledgements

This work is supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 739551 (KIOS CoE), by the European Union Civil Protection Call for proposals UCPM-2019-PP-AG grant agreement No 873240 (AIDERS) and from the Republic of Cyprus through the Directorate General for European Programmes, Coordination and Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savvas Papaioannou.

Ethics declarations

Conflicts of interest

No Conflicts of interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papaioannou, S., Kolios, P., Theocharides, T. et al. Towards Automated 3D Search Planning for Emergency Response Missions. J Intell Robot Syst 103, 2 (2021). https://doi.org/10.1007/s10846-021-01449-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01449-4

Keywords

Navigation