Abstract
Autonomous landing of a quadrotor UAV on a vessel deck is challenging due to the special sea environment. In this paper, we present an on-board monocular vision based solution that provides a quadrotor with the capability to autonomously track and land on a vessel deck platform with simulated high sea state conditions. The whole landing process includes two stages: approaching from a long range and landing after hovering above the landing platform. Only on-board sensors are used in both stages, without external information input. We use Parrot AR.Drone as the experimental quadrotor platform, and a self-designed vessel deck emulator is constructed to evaluate the effectiveness of the proposed vessel deck landing solution. Experimental results demonstrate the accuracy and robustness of the developed landing algorithms.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Jin, S., Zhang, J., Shen, L., Li, T.: On-board vision autonomous landing techniques for quadrotor: a survey. In: Control conference (CCC), 2016 35th Chinese, pp. 10,284–10,289. IEEE, Chengdu (2016)
Ling, K., Chow, D., Das, A., Waslander, S.L.: Autonomous maritime landings for low-cost vtol aerial vehicles. In: 2014 Canadian conference on computer and robot vision (CRV), pp. 32–39. IEEE, Montreal (2014)
Daly, J.M., Ma, Y., Waslander, S.L.: Coordinated landing of a quadrotor on a skid-steered ground vehicle in the presence of time delays. In: 2011 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 4961–4966. IEEE, San Francisco (2011)
Sanchez-Lopez, J.L., Pestana, J., Saripalli, S., Campoy, P.: An approach toward visual autonomous ship board landing of a vtol uav. J. Intell. Robot. Syst. 74(1–2), 113–127 (2014)
Gautam, A., Sujit, P., Saripalli, S.: A survey of autonomous landing techniques for uavs. In: 2014 international conference on unmanned aircraft systems (ICUAS), pp. 1210–1218. IEEE, Orlando (2014)
Pebrianti, D., Kendoul, F., Azrad, S., Wei, W., Nonami, K.: Autonomous hovering and landing of a quad-rotor micro aerial vehicle by means of on ground stereo vision system. Journal of System Design and Dynamics 4(2), 269–284 (2010)
Kong, W., Zhang, D., Wang, X., Xian, Z., Zhang, J.: Autonomous landing of an uav with a ground-based actuated infrared stereo vision system. In: 2013 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 2963–2970. IEEE, Tokyo (2013)
Kong, W., Zhou, D., Zhang, D., Zhang, J.: Vision-based autonomous landing system for unmanned aerial vehicle: a survey. In: 2014 international conference on multisensor fusion and information integration for intelligent systems (MFI), pp. 1–8. IEEE, Beijing (2014)
Barnard, S.T., Fischler, M.A.: Computational stereo. ACM Comput. Surv. (CSUR) 14(4), 553–572 (1982)
Strydom, R., Thurrowgood, S., Denuelle, A., Srinivasan, M.V.: Uav guidance: a stereo-based technique for interception of stationary or moving targets. In: Conference towards autonomous robotic systems, pp. 258–269. Springer, Liverpool (2015)
Chen, X., Phang, S.K., Shan, M., Chen, B.M.: System integration of a vision-guided uav for autonomous landing on moving platform. In: IEEE international conference on control and automation (ICCA), 2016 12th, pp. 761–766. IEEE, Kathmandu (2016)
Benini, A., Rutherford, M.J., Valavanis, K.P.: Real-time, gpu-based pose estimation of a uav for autonomous takeoff and landing. In: IEEE international conference on robotics and automation (ICRA), 2016, pp. 3463–3470. IEEE, Stockholm (2016)
Cocchioni, F., Frontoni, E., Ippoliti, G., Longhi, S., Mancini, A., Zingaretti, P.: Visual based landing for an unmanned quadrotor. J. Intell. Robot. Syst. 84(1-4), 511–528 (2016)
Benini, A., Mancini, A., Longhi, S.: An imu/uwb/vision-based extended kalman filter for mini-uav localization in indoor environment using 802.15. 4a wireless sensor network. J. Intell. Robot. Syst. 70, 1–16 (2013)
Meguro, J.-I., Murata, T., Takiguchi, J.-I., Amano, Y., Hashizume, T.: Gps multipath mitigation for urban area using omnidirectional infrared camera. IEEE Trans. Intell. Transp. Syst. 10(1), 22–30 (2009)
Wenzel, K.E., Masselli, A., Zell, A.: Automatic take off, tracking and landing of a miniature uav on a moving carrier vehicle. J. Intell. Robot. Syst. 61(1), 221–238 (2011)
Hu, B., Lu, L., Mishra, S.: Fast, safe and precise landing of a quadrotor on an oscillating platform. In: American control conference (ACC), 2015, pp. 3836–3841. IEEE, Chicago (2015)
Dougherty, J., Lee, D., Lee, T.: Laser-based guidance of a quadrotor uav for precise landing on an inclined surface. In: American control conference (ACC), 2014, pp. 1210–1215. IEEE, Portland (2014)
Das, P.I.T.M., Swami, S., Conrad, J.M.: An algorithm for landing a quadrotor unmanned aerial vehicle on an oscillating surface. In: Southeastcon, 2012 proceedings of IEEE, pp. 1–4. IEEE, Orlando (2012)
Venugopalan, T., Taher, T., Barbastathis, G.: Autonomous landing of an unmanned aerial vehicle on an autonomous marine vehicle. In: Oceans, 2012, pp. 1–9. IEEE, Hampton Roads (2012)
Chaves, S.M., Wolcott, R.W., Eustice, R.M.: Neec research: toward gps-denied landing of unmanned aerial vehicles on ships at sea. Nav. Eng. J. 127(1), 23–35 (2015)
Krajník, T., Vonásek, V., Fišer, D., Faigl, J.: Ar-drone as a platform for robotic research and education. In: International conference on research and education in robotics, pp. 172–186. Springer, Prague (2011)
Garratt, M., Pota, H., Lambert, A., Eckersley-Maslin, S., Farabet, C.: Visual tracking and lidar relative positioning for automated launch and recovery of an unmanned rotorcraft from ships at sea. Nav. Eng. J. 121(2), 99–110 (2009)
Björck, Å.: Numerical methods for least squares problems. SIAM (1996)
Yakimenko, O.A., Kaminer, I.I., Lentz, W.J., Ghyzel, P.: Unmanned aircraft navigation for shipboard landing using infrared vision. IEEE Trans. Aerosp. Electron. Syst. 38(4), 1181–1200 (2002)
Acknowledgements
The authors would acknowledge the research support from the Air Force Office of Scientific Research (AFOSR) FA9550-16-1-0184 and the Office of Naval Research (ONR) N00014-16-1-2729. The instructive suggestions from Dr. David B. Findlay are also gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
(MP4 4.43 MB)
Rights and permissions
About this article
Cite this article
Wang, L., Bai, X. Quadrotor Autonomous Approaching and Landing on a Vessel Deck. J Intell Robot Syst 92, 125–143 (2018). https://doi.org/10.1007/s10846-017-0757-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-017-0757-5