Abstract
In this paper, we address pursuit-evasion games of high speed evader involving multiple pursuers and a single evader with holonomic constraints in an open domain. The existing work on this problem discussed the required formation and capture strategy for a group of pursuers. However, the formulation has mathematical errors and has raised concerns over the validity of the developed capture strategy. This paper uses the idea of Apollonius circle to develop an escape strategy for the high speed evader, resolving the shortfalls in the existing work. The strategy is built on a concept of perfectly encircled formation and the conditions required to construct the same are presented. The escape strategy contains two steps. Firstly, the evader employs a strategy that forces a gap in the formation against all the admissible strategies of a group of pursuers. In the second step, it uses this gap to escape. The strategy considers both direct and indirect gaps in the formations. The indirect gap is encountered when a group of three or four pursuers is employed to capture. The efficacy of the escape strategy is established using simulation results.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Balakrishnan, S.N., Tsourdos, A., White, B.A.: Advances in Missile Guidance, Control, and Estimation. Automation and Control Engineering. CRC Press, 2012. Chapter 9, doi:10.1201/b12503-10
Bao-Fu, F., Qi-Shu, P., Bing-Rong, H., Lei, D., Qiu-Bo, Z., Zhaosheng, Z.: Research on high speed evader vs. multi lower speed pursuers in multi pursuit-evasion games. Inf. Technol. J. 11(8), 989–997 (2012). doi:10.3923/itj.2012.989.997
Bopardikar, S.D., Bullo, F., Hespanha, J.P.: On discrete-time pursuit-evasion games with sensing limitations. IEEE Trans. Robot. 24(6), 1429–1439 (2008). doi:10.1109/TRO.2008.2006721
Conway, B.A., Pontani, M.: Numerical solution of the three-dimensional orbital pursuit-evasion game. J. Guid. Control Dyn. 32(2), 474–487 (2009). doi:10.2514/1.37962
Evans, L., Souganidis, P.: Differential games and representation formulas for solutions of hamilton-jacobi-isaacs equations. Indiana Univ. Math. J. 33(5), 773–797 (1984). doi:10.1512/iumj.1984.33.33040
Ho, Y., Bryson, A., Baron, S.: Differential games and optimal pursuit-evasion strategies. IEEE Trans. Autom. Control 10(4), 385–389 (1965). doi:10.1109/TAC.1965.1098197
Huang, H., Zhang, W., Ding, J., Stipanovic, D.M., Tomlin, C.J.: Guaranteed decentralized pursuit-evasion in the plane with multiple pursuers. In: Proceedings of the Fifieth IEEE Conference on Decision and Control and European Control Conference, pp 4835–4840. IEEE, Orlando, FL (2011), doi:10.1109/CDC.2011.6161237
Isaacs, R.: Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization. Wiley, New York (1965). chapter 6
Isler, V., Kannan, S., Khanna, S.: Randomized pursuit-evasion in a polygonal environment. IEEE Trans. Robot. 21(5), 875–884 (2005). doi:10.1109/TRO.2005.851373
Jarmark, B., Hillberg, C.: Pursuit-evasion between two realistic aircraft. J. Guid. Control Dyn. 7(6), 690–694 (1984). doi:10.2514/3.19914
Jin, S., Qu, Z.: Pursuit-evasion games with multi-pursuer vs. one fast evader. In: Proceedings of the Eighth World Congress on Intelligent Control and Automation (WCICA), pp 3184–3189. IEEE, Jinan, China (2010), doi:10.1109/WCICA.2010.5553770
Kothari, M., Manathara, J.G., Postlethwaite, I.: A cooperative pursuit-evasion game for nonholonomic systems. In: Proceedings of the Ninteenth IFAC World Congress, vol. 19, pp 1977–1984, Cape Town, South Africa (2014), doi:10.3182/20140824-6-ZA-1003.01992
Makkapati, V.R.: Simulation: Evasion from a PEF of 4 pursuers
Makkapati, V.R.: Simulation: Evasion from a PEF of 5 pursuers
Makkapati, V.R.: Simulation: Evasion from a PEF of 6 pursuers
Mitchell, I.M., Bayen, R.M., Tomlin, C.J.: Bayen a time-dependent hamilton-jacobi formulation of reachable sets for continuous dynamic games. IEEE Trans. Autom. Control 50(7), 947–957 (2005). doi:doi:10.1109/TAC.2005.851439 doi:10.1109/TAC.2005.851439
Pachter, M., games, Y.Y.: Simple-motion pursuit-evasion differential part 1: Stroboscopic strategies in collision-course guidance and proportional navigation. J. Optim. Theory Appl. 51(1), 95–127 (1986). doi:10.1007/BF00938604
Rajan, N., Prasad, U.R., Rao, N.J.: Pursuit-evasion of two aircraft in a horizontal plane. J. Guid. Control Dyn. 3(3), 261–267 (1980). doi:10.2514/3.55982
Ramana, M.V., Kothari, M.: A cooperative pursuit-evasion game of a high speed evader. In: Proceedings of the IEEE Fifty-Fourth Annual Conference on Decision and Control (CDC), pp 2969–2974. IEEE, Osaka, Japan (2015), doi:10.1109/CDC.2015.7402668
Shinar, J., Gutman, S.: Three-dimensional optimal pursuit and evasion with bounded controls. IEEE Trans. Autom. Control 25(3), 492–496 (1980). doi:10.1109/TAC.1980.1102372
Shneydor, N.A.: Missile Guidance and Pursuit: Kinematics, Dynamics and Control. Horwood Series in Engineering Science. Horwood Publishing Limited, Chichester, England (1998). Chapter 4
Takei, R., Huang, H., Ding, J., Tomlin, C.J.: Time-optimal multi-stage motion planning with guaranteed collision avoidance via an open-loop game formulation. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp 323–329. IEEE, Saint Paul, MN (2012), doi:10.1109/ICRA.2012.6225074
Vidal, R., Shakernia, O., Jin Kim, H., Shim, D.H., Sastry, S.: Probabilistic pursuit-evasion games: Theory, implementation, and experimental evaluation. IEEE Trans. Robot. Autom. 18(5), 662–669 (2002). doi:10.1109/TRA.2002.804040
Wang, X., Cruz Jr, J.B., Chen, G., Pham, K., Blasch, E.: Formation control in multi-player pursuit evasion game with superior evaders. In: Proceedings of the Defense Transformation and Net-Centric Systems, volume 6578. International Society for Optics and Photonics (2007), doi:10.1117/12.723300
Mo, W., Chen, G., Cruz, J.B, Haynes, L., Pham, K., Blasch, E.: Multi-pursuer multievader pursuit-evasion games with jamming confrontation. J. Aerosp. Comput. Inform. Commun. 4(3), 693–706 (2007). doi:10.2514/1.25329
Wei, M., Chen, G., Cruz, J.B., Haynes, L.S., Chang, M.-H., Blasch, E.: A decentralized approach to pursuer-evader games with multiple superior evaders in noisy environments. In: Proccedings of the IEEE Aerospace Conference, pp 1–10. IEEE, Big Sky, MT (2007), doi:10.1109/AERO.2007.353051
Wei, M., Chen, G., Cruz Jr, J.B., Hayes, L., Chang, M.-H.: A decentralized approach to pursuer-evader games with multiple superior evaders. In: IEEE Intelligent Transportation Systems Conference, pp 1586–1591. IEEE (2006), doi:10.1109/ITSC.2006.1707450
Zarchan, P.: Tactical and Strategic Missile Guidance, volume 239 of Progress in Astronautics and Aeronautics, 6th edn. American Institute of Aernautics and Astronautics, Inc., Reston, VA (2012). Chapters 2, 8
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ramana, M.V., Kothari, M. Pursuit-Evasion Games of High Speed Evader. J Intell Robot Syst 85, 293–306 (2017). https://doi.org/10.1007/s10846-016-0379-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-016-0379-3