Switched Control to Robot-Human Bilateral Interaction for Guiding People | Journal of Intelligent & Robotic Systems Skip to main content
Log in

Switched Control to Robot-Human Bilateral Interaction for Guiding People

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a switched control strategy to interpret and design a human-robot bilateral interaction when a human follows a non-holonomic mobile robot at a desired distance while the robot is already following a known path. Furthermore, it proposes and experimentally validates a model that mathematically describes the human behavior when performing the specific task of tracking a mobile robot. This model is useful for the purposes of the control system design and its associated stability analysis. A switched system is proposed to model the complete human-robot behavior. The switching strategy is based on the human-robot relative position and on the human intention to follow the robot. Control errors are defined in terms of human to robot and robot to path instantaneous distances. Stability analyses for the individual controllers, as well as for the complete switching system, are provided by considering Lyapunov theory. Real human-robot interaction experiments show the good performance of the proposed control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Capi, G., Toda, H., Nagasaki, T.: A vision based robot navigation and human tracking for social robotics. IEEE Int. Work. Robot. Sens. Environ. 22, 1–6 (2010)

    Google Scholar 

  2. Bellotto, N., Huosheng, H.: Multisensor-based human detection and tracking for mobile service robots. IEEE Trans. Syst. Man, Cybernet. 39, 167–181 (2009)

    Article  Google Scholar 

  3. Sisbot, E.A., Marin, L.F., Alami, R., Simeon, T.: A Human Aware Mobile Robot Motion Planner. IEEE Trans. Robot. 23, 874–883 (2007)

    Article  Google Scholar 

  4. Garrell, A., Sanfeliu, A.: Local optimization of cooperative robot movements for guiding and regrouping people in a guiding mission. IEEE/RSJ International Conference on Intelligent Robot and System (IROS). pp. 3294–3299 (2010)

  5. Lam, C.P., Chou, C.T, Chiang, K.H., Fu, L.C.: Human-centered robot navigation-now a harmoniously human-robot coexisting environment. IEEE Trans. Robot. 27, 1873–1818 (2011)

    Google Scholar 

  6. Shiomi, M., Kanda, T., Ishiguro, H., Hagita, N.: Interactive humanoid robots for a science museum. IEEE Intell. Syst. 22, 25–32 (2007)

    Article  Google Scholar 

  7. Faber, F., et al.: The humanoid museum tour guide Robotinho. The 18th IEEE International Symposium on Robot and Human Interactive Communication. pp. 891–896 (2009)

  8. Kim, H., Chung, W., Yoo, Y.: Detection and tracking of human legs for a mobile service robot. IEEE/ASME International Conference on Advanced Intelligent Mechatronics. pp. 812–817 (2010)

  9. MacRuer, D.T., Jex, H.R.: A Review of Quasi-Linear Pilot Models. IEEE Trans. Human Factors Electron. 8, 231–248 (1967)

    Article  Google Scholar 

  10. Lee, K.K., Yu, M., Xu, Y.: Modeling of human walking trajectories for surveillance. IEEE/RSJ Int. Conf. Intell. Robot. Syst. 2, 1554–1559 (2003)

    Google Scholar 

  11. Alvarez, A., Trivino, G., Cordon, O.: Human gait modeling using a genetic fuzzy finite state machine. IEEE Trans. Fuzzy Syst. 20, 205–223 (2012)

    Article  Google Scholar 

  12. Awang, S., Shamsuddin, S.M.: 3D Human movement (walking) modeling using neural network. IEEE International Conference on Computing & informatics. pp. 1–4 (2006)

  13. Arechavaleta, G., Laumond, J.P., Hicheur, H., Berthoz, A.: The no-holonomic nature of human locomotion: a modeling study. The first IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. pp. 158–163 (2010)

  14. Slawiñski, E., Postigo, J., Mut, V.: Stable teleoperation of mobile robots. Proceedings IEEE International Conference on Mechatronics and Automation. pp. 318–323 (2006)

  15. Wang, Q., Wei, K., Wang, L., D.L.: Modeling and stability analysis of human normal walking with implications for the evolution of the foot. 3rd IEEE RAS & EMB International Conference on Biomedical Robotics and Biomechatronics. pp. 479–484 (2010)

  16. Sreenivasa, M., Soueres, P., Laumond, J.: Walking to grasp: modeling of human movements as invariants and an application. IEEE Trans. Syst. Man Cybern. 42, 880–893 (2012)

    Article  Google Scholar 

  17. Andaluz, V., Roberti, F., Toibero, J.M., Carelli, R., Wagner, B.: Adaptive Dynamic Path Following Control of an Unicycle-Like Mobile Robot. In: Jeschke, S., Liu, H., Schilberg, D. (eds.) Lecture Notes in Computer Science: Intelligent Robotics and Applications, pp. 563–574. Berlin Heidelberg . Springer-Verlag (2011)

  18. Arechavaleta, G., Laumond, J.P., Hicheur, H., Berthoz, A.: An Optimality Principle Governing Human Walking. IEEE Trans. Robot. 24(1), 5–14 (2008)

    Article  Google Scholar 

  19. Hicheur, H., Pham, Q.C., Arechavaleta, G., Laumond, J.P., Berthoz, A.: The formation of trajectories during goal-oriented locomotion in humans. I. A stereotyped behavior. Eur. J. Neurosci. 26, 2376–2390 (2007)

    Article  Google Scholar 

  20. Pham, Q.C., Hicheur, H., Arechavaleta, G., Laumond, J.P., Berthoz, A.: The formation of trajectories during goal-oriented locomotion in humans. II. A maximum smoothness model. Eur. J. Neurosci. 26, 2391–2403 (2007)

    Article  Google Scholar 

  21. Silviu-lulian, N.: Delay effects on stability a robust control Approach. Chapter 3 (pp. 107-111) and chapter 5 (pp. 198-205). Springer, London (2001)

  22. Toibero, J.M., Roberti, F., Carelli, R., Fiorini, P.: Switching control approach for stable navigation of mobile robots in unknown environments. Robot. Comput. Integr. Manuf. 27, 558–568 (2011)

    Article  Google Scholar 

  23. Linh, V., Morgansen, K.A.: Stability of Time-Delay Feedback Switched Linear Systems. IEEE Trans. Autom. Control 55(10), 2385–2390 (2010)

    Article  Google Scholar 

  24. Chen, W.H., Zheng, W.X.: Delay-independent minimum dwell time for exponential stability of uncertain switched delay systems. IEEE Trans. Autom. Control 55(10), 2406–2413 (2010)

    Article  MathSciNet  Google Scholar 

  25. Caliskan, S.Y., Ozbay, H., Niculescu, S.I.: Dwell-time computation for stability of switched systems with time delays. IET Control Theory & Appl. 7(10), 1422–1428 (2013)

    Article  MathSciNet  Google Scholar 

  26. Sun, Z., Ge, S.S.: Stability Theory of Switched Dynamical Systems. Springer Verlag London Limited (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Roberti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leica, P., Toibero, J.M., Roberti, F. et al. Switched Control to Robot-Human Bilateral Interaction for Guiding People. J Intell Robot Syst 77, 73–93 (2015). https://doi.org/10.1007/s10846-014-0098-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-014-0098-6

Keywords

Navigation