A Singularly Perturbed System Approach to Adaptive Neural Back-stepping Control Design of Hypersonic Vehicles | Journal of Intelligent & Robotic Systems
Skip to main content

A Singularly Perturbed System Approach to Adaptive Neural Back-stepping Control Design of Hypersonic Vehicles

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents the design of neural adaptive flight control systems for the longitudinal dynamics of hypersonic vehicle. By considering the coupling between thrust and pitch moment, the proposed control strategy is derived from the solutions of a series of fast dynamical equations, which are designed based on the back-stepping control and singularly perturbed system approach. The RBF neural networks are employed to approximate the unknown hypersonic dynamics. Simulation results are included to show the effectiveness of the neural adaptive control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Khalil, H.K.: Nonlinear Systems. Prentice Hall, Englewood Cliffs (2002)

    MATH  Google Scholar 

  2. Xu, H.J., Ioannou, P.A., Mirmirani, M.: Adaptive sliding mode control design for a hypersonic flight vehicle. J. Guid. Control. Dyn. 27(5), 829–838 (2004)

    Article  Google Scholar 

  3. Ito, D., Ward, D., Valasek, J.: Robust dynamic inversion controller design and analysis for the X-38. In: AIAA Guidance,Navigation, and Control Conference, AIAA-2001-4380 (2001)

  4. Wang, Q., Stengel, R.F.: Robust nonlinear control of a hypersonic aircraft. J. Guid. Control. Dyn. 23(4), 577–584 (2000)

    Article  Google Scholar 

  5. Wallner, E.M., Well, K.H.: Nonlinear flight control design for the X-38 using CMAC neural networks. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA-2001-4042 (2001)

  6. Xu, H.J., Mirmirani, M., Ioannou, P.A.: Robust neural adaptive control of a hypersonic aircraft. In: AIAA Guidance, Navigation, and Control Conference (2003)

  7. Gao, D., Sun, Z.: Fuzzy tracking control design for hypersonic vehicles via T-S model. Sci. China-Inf. Sci. 54(3), 521–528 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Buschek, H., Calise, A.J.: Uncertainty modeling and fixed-order controller design for a hypersonic vehicle model. J. Guid. Control. Dyn. 20, 42–48 (1997)

    Article  Google Scholar 

  9. Groves, K.P., Sigthorsson, D.O., Serrani, A., Yurkovich, S., Bolender, M.A., Doman, D.B.: Reference command tracking for a linearized model of an air-breathing hypersonic vehicle. In: AIAA Guidance, Navigation, and Control Conference, pp. 2901–2914. San Francisco, CA (2005)

  10. Sigthorsson, D., Jankovsky, P., Serrani, A., Yurkovich, S., Bolender, M., Doman, D.B.: Robust linear output feedback control of an airbreathing hypersonic vehicle. J. Guid. Control. Dyn. 31, 1052–1066 (2008)

    Article  Google Scholar 

  11. Kokotovic, P.V.: The joy of feedback: nonlinear and adaptive. IEEE Control. Syst. Maga. 12(7), 7–17 (1992)

    Article  MathSciNet  Google Scholar 

  12. Gao, D., Sun, Z., Xu, B.: Fuzzy adaptive control for pure-feedback system via time scale separation. Int. J. Control. Autom. Syst. 11(1), 147–158 (2013)

    Article  Google Scholar 

  13. Gao, D., Sun, Z., Liu, J.: Dynamic inversion control for a class of pure-feedback systems. Asian J. Control. 14(2), 605–611 (2012)

    Article  MathSciNet  Google Scholar 

  14. Wang, C., Hillb, D.J., Ge, S.S., Chen, G.R.: An ISS-modular approach for adaptive neural control of pure-feedback systems. Automatica 42(5), 723–731 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Du, H.B., Shao, H.H., Yao, P.J.: Adaptive neural network control for a class of low-triangular-structured nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 17(2), 509–514 (2006)

    Google Scholar 

  16. Ge, S.S., Wang, C.: Adaptive NN control of uncertain nonlinear pure-feedback systems. Automatica 38(4), 671–682 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ge, S.S., Wang, C.: Direct adaptive NN control of a class of nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 13(1), 214–221 (2002)

    MathSciNet  Google Scholar 

  18. Swaroop, D., Hedrick, J.K., Yip, P.P., Gerdes, J.C.: Dynamic surface control for a class of nonlinear systems. IEEE Trans. Autom. Control. 45(10), 1893–1899 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Shin, D.H., Kim, Y.D.: Reconfigurable flight control system design using adaptive neural networks. IEEE Trans. Control Syst. Technol. 12(1), 87–100 (2004)

    Article  Google Scholar 

  20. Kim, S.H., Kim, Y.S., Song, C.: A robust adaptive nonlinear control approach to missile autopilot design. Control. Eng. Pract. 12, 149–154 (2004)

    Article  MATH  Google Scholar 

  21. Gao, D., Sun, Z., Luo, X., Du, T.: Fuzzy adaptive control for hypersonic vehicle via backstepping method. J. Contr. Theory Appl. 25, 805–810 (2008)

    Google Scholar 

  22. Xu, B., Sun, F., Liu, H., Ren, J.: Adaptive Kriging ontroller design for hypersonic flight vehicle via back-stepping. IET Contr. Theory Appl. 6(4), 487–497 (2012)

    Article  MathSciNet  Google Scholar 

  23. Gao, D., Sun, Z., Du, T.: Dynamic surface control for hypersonic aircraft using fuzzy logic system. In: IEEE International Conference on Automation and Logistics, pp. 2314–2319. IEEE Press, Piscataway (2007)

    Google Scholar 

  24. Xu, B., Sun, F., Yang, C., Gao, D., Ren, J.: Adaptive discrete-time controller design with neural network for hypersonic flight vehicle via back-stepping. Int. J. Control. 84(9), 1543–1552 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Xu, B., Wang, D., Sun, F., Shi, Z.: Direct neural discrete control of hypersonic flight vehicle. Nonlinear Dyn. 70(1), 269–278 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Xu, B., Shi, Z.: Universal kriging control of hypersonic aircraft model using predictor model without back-stepping. IET Contr. Theory Appl. 7(4), 573–583 (2013)

    Article  MathSciNet  Google Scholar 

  27. Xu, B., Wang, D., Sun, F., Shi, Z.: Direct neural control of hypersonic flight vehicles with prediction model in discrete time. Neurocomputing 115(4), 39–48 (2013)

    Article  Google Scholar 

  28. Marrison, C.I., Stengel, R.F.: Design of robust control system for a hypersonic aircraft. J. Guid. Control. Dyn. 21(1), 58–63 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoxiang Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, D., Wang, S. & Zhang, H. A Singularly Perturbed System Approach to Adaptive Neural Back-stepping Control Design of Hypersonic Vehicles. J Intell Robot Syst 73, 249–259 (2014). https://doi.org/10.1007/s10846-013-9992-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9992-6

Keywords