On-board and Ground Visual Pose Estimation Techniques for UAV Control | Journal of Intelligent & Robotic Systems
Skip to main content

On-board and Ground Visual Pose Estimation Techniques for UAV Control

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, two techniques to control UAVs (Unmanned Aerial Vehicles), based on visual information are presented. The first one is based on the detection and tracking of planar structures from an on-board camera, while the second one is based on the detection and 3D reconstruction of the position of the UAV based on an external camera system. Both strategies are tested with a VTOL (Vertical take-off and landing) UAV, and results show good behavior of the visual systems (precision in the estimation and frame rate) when estimating the helicopter’s position and using the extracted information to control the UAV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Mejias, L., Saripalli, S., Campoy, P., Sukhatme, G.: Visual servoing of an autonomous helicopter in urban areas using feature tracking. Journal of Field Robotics 23(3–4), 185–199 (2006)

    Article  Google Scholar 

  2. Amidi, O., Kanade, T., Fujita, K.: A visual odometer for autonomous helicopter flight. In: Proceedings of the Fifth International Conference on Intelligent Autonomous Systems (IAS-5) (1998)

  3. Artieda, J., Sebastian, J.M., Campoy, P., Correa, J.F., Mondragón, I.F., Martínez, C., Olivares, M.: Visual 3-d slam from uavs. J. Intell. Robot. Syst. 55(4–5), 299–321 (2009)

    Article  Google Scholar 

  4. McGee, T.G., Sengupta, R., Hedrick, K.: Obstacle detection for small autonomous aircraft using sky segmentation. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005. pp. 4679–4684 (2005)

  5. He, Z., Iyer, R.V., Chandler, P.R.: Vision-based uav flight control and obstacle avoidance. In: American Control Conference, 2006, 5 pp. (2006)

  6. Carnie, R., Walker, R., Corke, P.: Image processing algorithms for uav “sense and avoid”. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, pp. 2848–2853 (2006)

  7. Conticelli, F., Allotta, B., Khosla, P.K.: Image-based visual servoing of nonholonomic mobile robots. In: Proceedings of the 38th IEEE Conference on Decision and Control, 1999. vol. 4, pp. 3496–3501 (1999)

  8. Mariottini, G.L., Oriolo, G., Prattichizzo, D.: Image-based visual servoing for nonholonomic mobile robots using epipolar geometry. IEEE Trans. Robot.23(1), 87–100 (2007). doi:10.1109/TRO.2006.886842

    Article  Google Scholar 

  9. Siciliano, B., Khatib, O., (eds.): Springer Handbook of Robotics. Springer, Berlin (2008)

    MATH  Google Scholar 

  10. Hutchinson, S., Hager, G.D., Corke, P.: A tutorial on visual servo control. IEEE Trans. Robot. Autom. 12(5), 651–670 (1996)

    Article  Google Scholar 

  11. Chaumette, F., Hutchinson, S.: Visual servo control. I. basic approaches. IEEE Robot. Autom. Mag. 13(4), 82–90 (2006)

    Article  Google Scholar 

  12. Simon, G., Fitzgibbon, A.W., Zisserman, A.: Markerless tracking using planar structures in the scene. In: Proceedings. IEEE and ACM International Symposium on Augmented Reality, 2000. (ISAR 2000), pp. 120–128 (2000)

  13. Simon, G., Berger, M.-O.: Pose estimation for planar structures. IEEE Comput. Graph. Appl. 22(6), 46–53 (2002)

    Article  Google Scholar 

  14. Shi, J., Tomasi, C.: Good features to track. In: 1994 IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’94), pp. 593–600 (1994)

  15. Baker, S., Matthews, I.: Lucas–kanade 20 years on: a unifying framework: part 1. Technical Report CMU-RI-TR-02-16, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (2002)

  16. Bouguet, J.-Y.: Pyramidal implementation of the lucas–kanade feature tracker. Technical report, Intel Corporation. Microprocessor Research Labs, Santa Clara, CA 95052 (1999)

  17. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  18. Sturm, P.: Algorithms for plane-based pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1010–1017. Hilton Head Island, South Carolina (2000)

  19. Martínez, C., Campoy, P., Mondragon, I., Olivares, M.: Trinocular Ground System to Control UAVs. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS, pp. 3361–3367 (2009)

  20. Swain, M.J., Ballard, D.H.: Color indexing. Int. J. Comput. Vis. 7(1), 11–32 (1991)

    Article  Google Scholar 

  21. Bradski, G.R.: Computer vision face tracking for use in a perceptual user interface. Intel Technol. J. 2(2), 12–21 (1998)

    Google Scholar 

  22. Kragic, S.D., Christensen, H.I.: Survey on visual servoing for manipulation. Tech. Rep ISRN KTH/NA/P–02/01–SE, Centre for Autonomous Systems, Numerical Analysis and Computer Science, Royal Institute of Technology, Stockholm, Sweden, Fiskartorpsv. 15 A 100 44 Stockholm. January 2002. Available at www.nada.kth.se/~danik/VSpapers/report.pdf

  23. Computer Vision Group. Universidad Politécnica de Madrid. CVG 2010. http://www.vision4uav.com

  24. Campoy, P., Correa, J.F., Mondragón, I., Martínez, C., Olivares, M., Mejías, L., Artieda, J.: Computer vision onboard UAVs for civilian tasks. J Intell. Robot Syst. 54(1–3), 105–135 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol Martínez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, C., Mondragón, I.F., Olivares-Méndez, M.A. et al. On-board and Ground Visual Pose Estimation Techniques for UAV Control. J Intell Robot Syst 61, 301–320 (2011). https://doi.org/10.1007/s10846-010-9505-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9505-9

Keywords