Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review | Journal of Intelligent Manufacturing Skip to main content

Advertisement

Log in

Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

The wear of cutting tools, cutting force determination, surface roughness variations and other machining responses are of keen interest to latest researchers. The variations of these machining responses results in change in dimensional accuracy and productivity upto great extent. In addition, an excessive increase in wear leads to catastrophic consequences, exceeding the tool breakage. Therefore, this article discusses the online trend of modern approaches in tool condition monitoring while different machining operations. For this purpose, the effective use of new sensors and artificial intelligence (AI) is considered and followed during this holistic review work. The sensor systems used for monitoring tool wear are dynamometers, accelerometers, acoustic emission sensors, current and power sensors, image sensors, other sensors. These systems allow to solve the problem of automation and modeling of technological parameters of the main types of cutting, such as turning, milling, drilling and grinding. The modern artificial intelligence methods are considered, such as: Neural networks, Image recognition, Fuzzy logic, Adaptive neuro-fuzzy inference systems, Bayesian Networks, Support vector machine, Ensembles, Decision and regression trees, k-nearest neighbors, Artificial Neural Network, Markov model, Singular Spectrum Analysis, Genetic algorithms. Discussions also includes the main advantages, disadvantages and prospects of using various AI methods for tool wear monitoring. Moreover, the problems and future directions of the main processing methods using AI models are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abellan-Nebot, J. V., & Romero, S. F. (2010). A review of machining monitoring systems based on artificial intelligence process models. International Journal of Advanced Manufacturing Technology, 47, 237–257. https://doi.org/10.1007/s00170-009-2191-8

    Article  Google Scholar 

  • Abu-Mahfouz, I. (2003). Drilling wear detection and classification using vibration signals and artificial neural network. International Journal of Machine Tools and Manufacture, 43, 707–720.

    Article  Google Scholar 

  • Ahmad, M. I., Yusof, Y., Daud, M. E., Latiff, K., Abdul Kadir, A. Z., & Saif, Y. (2020). Machine monitoring system: a decade in review. The International Journal of Advanced Manufacturing Technology, 108, 3645–3659.

    Article  Google Scholar 

  • Ahmed, Y. S., Alam, M. S., Arif, A. F. M., & Veldhuis, S. C. (2019). Use of acoustic emission and cutting force signals to monitor built-up edge formation in stainless steel turning. International Journal of Advanced Manufacturing Technology, 103, 2257–2276.

    Article  Google Scholar 

  • Ai, Y., Jiang, P., Shao, X., Wang, C., Li, P., Mi, G., et al. (2016). A defect-responsive optimization method for the fiber laser butt welding of dissimilar materials. Materials and Design, 90, 669–81. https://doi.org/10.1016/j.matdes.2015.10.160

    Article  Google Scholar 

  • Ai, Y., Jiang, P., Shao, X., Wang, C., Li, P., Mi, G., et al. (2016). An optimization method for defects reduction in fiber laser keyhole welding. Applied Physics A, 122, 31.

    Article  Google Scholar 

  • Ai, Y., Shao, X., Jiang, P., Li, P., Liu, Y., & Yue, C. (2015). Process modeling and parameter optimization using radial basis function neural network and genetic algorithm for laser welding of dissimilar materials. Applied Physics A, 121, 555–569.

    Article  Google Scholar 

  • Akkoyun, F., Ercetin, A., Aslantas, K., Pimenov, D. Y., Giasin, K., Lakshmikanthan, A., et al. (2021). Measurement of micro burr and slot widths through image processing: comparison of manual and automated measurements in micro-milling. Sensors, 21, 4432.

    Article  Google Scholar 

  • Alegre, E., Alaiz-Rodríguez, R., Barreiro, J., & Ruiz, J. (2009). Use of contour signatures and classification methods to optimize the tool life in metal machining. Estonian Journal of Engineering, 15, 3.

    Article  Google Scholar 

  • Aliustaoglu, C., Ertunc, H. M., & Ocak, H. (2009). Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system. Mechanical Systems and Signal Processing, 23, 539–546.

    Article  Google Scholar 

  • Alonso, F. J., & Salgado, D. R. (2008). Analysis of the structure of vibration signals for tool wear detection. Mechanical Systems and Signal Processing, 22, 735–748.

    Article  Google Scholar 

  • Ambadekar, P. K., & Choudhari, C. M. (2020). CNN based tool monitoring system to predict life of cutting tool. SN Applied Sciences, 2(5), 1–11.

    Article  Google Scholar 

  • Ambhore, N., Kamble, D., Chinchanikar, S., & Wayal, V. (2015). Tool condition monitoring system: A review. Materials Today Proceedings, 2, 3419–3428.

    Article  Google Scholar 

  • An, Q., Tao, Z., Xu, X., El Mansori, M., & Chen, M. (2020). A data-driven model for milling tool remaining useful life prediction with convolutional and stacked LSTM network. Measurement, 154, 107461.

    Article  Google Scholar 

  • Arriandiaga, A., Portillo, E., Sánchez, J. A., Cabanes, I., & Pombo, I. (2014). Virtual sensors for on-line wheel wear and part roughness measurement in the grinding process. Sensors, 14, 8756–8778.

    Article  Google Scholar 

  • Axinte, D., & Gindy, N. (2004). Assessment of the effectiveness of a spindle power signal for tool condition monitoring in machining processes. International Journal of Production Research, 42, 2679–2691.

    Article  Google Scholar 

  • Balazinski, M., Czogala, E., Jemielniak, K., & Leski, J. (2002). Tool condition monitoring using artificial intelligence methods. Engineering Applications of Artificial Intelligence, 15, 73–80.

    Article  Google Scholar 

  • Benardos, P. G., & Vosniakos, G. C. (2002). Prediction of surface roughness in CNC face milling using neural networks and Taguchi’s design of experiments. Robot Comput Integr Manuf, 18, 343–354.

    Article  Google Scholar 

  • Bhat, N. N., Dutta, S., Pal, S. K., & Pal, S. (2016). Tool condition classification in turning process using hidden Markov model based on texture analysis of machined surface images. Measurement, 90, 500–509. https://doi.org/10.1016/j.measurement.2016.05.022

    Article  Google Scholar 

  • Bhattacharyya, P., Sengupta, D., Mukhopadhyay, S., & Chattopadhyay, A. B. (2008). On-line tool condition monitoring in face milling using current and power signals. International Journal of Production Research, 46, 1187–1201.

    Article  Google Scholar 

  • Bhuiyan, M. S. H., & Choudhury, I. A. (2014). Review of sensor applications in tool condition monitoring in machining. Comprehensive Materials Processing, 13, 539–569.

    Article  Google Scholar 

  • Binsaeid, S., Asfour, S., Cho, S., & Onar, A. (2009). Machine ensemble approach for simultaneous detection of transient and gradual abnormalities in end milling using multisensor fusion. Journal of Materials Processing Technology, 209, 4728–4738.

    Article  Google Scholar 

  • Brito, L. C., da Silva, M. B., & Duarte, M. A. V. (2021). Identification of cutting tool wear condition in turning using self-organizing map trained with imbalanced data. Journal of Intelligent Manufacturing, 32, 127–140.

    Article  Google Scholar 

  • Bustillo, A., Díez-Pastor, J.-F., Quintana, G., & García-Osorio, C. (2011). Avoiding neural network fine tuning by using ensemble learning: Application to ball-end milling operations. International Journal of Advanced Manufacturing Technology, 57, 521.

    Article  Google Scholar 

  • Bustillo, A., Pimenov, D. Y., Matuszewski, M., & Mikolajczyk, T. (2018). Using artificial intelligence models for the prediction of surface wear based on surface isotropy levels. Robot Comput Integr Manuf, 53, 215–227.

    Article  Google Scholar 

  • Bustillo, A., Pimenov, D. Y., Mia, M., & Kapłonek, W. (2021). Machine-learning for automatic prediction of flatness deviation considering the wear of the face mill teeth. Journal of Intelligent Manufacturing, 32, 895–912.

    Article  Google Scholar 

  • Bustillo, A., Reis, R., Machado, A. R., & Pimenov, D. Y. (2020). Improving the accuracy of machine-learning models with data from machine test repetitions. Journal of Intelligent Manufacturing, 2020, 1–19.

    Google Scholar 

  • Byrne, G., Dornfeld, D., Inasaki, I., Ketteler, G., König, W., & Teti, R. (1995). Tool condition monitoring (TCM)—The status of research and industrial application. CIRP Annals, 44, 541–567.

    Article  Google Scholar 

  • Caggiano, A. (2018). Tool wear prediction in Ti-6Al-4V machining through multiple sensor monitoring and PCA features pattern recognition. Sensors, 18, 823.

    Article  Google Scholar 

  • Cai, W., Zhang, W., Hu, X., & Liu, Y. (2020). A hybrid information model based on long short-term memory network for tool condition monitoring. Journal of Intelligent Manufacturing, 31, 1497–1510.

    Article  Google Scholar 

  • Çaydaş, U., & Ekici, S. (2012). Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel. Journal of Intelligent Manufacturing, 23, 639–650. https://doi.org/10.1007/s10845-010-0415-2

    Article  Google Scholar 

  • Chen, N., Hao, B., Guo, Y., Li, L., Khan, M. A., & He, N. (2020). Research on tool wear monitoring in drilling process based on APSO-LS-SVM approach. The International Journal of Advanced Manufacturing Technology, 108, 2091–2101.

    Article  Google Scholar 

  • Chen, Y., Jin, Y., & Jiri, G. (2018). Predicting tool wear with multi-sensor data using deep belief networks. International Journal of Advanced Manufacturing Technology, 99, 1917–1926.

    Article  Google Scholar 

  • Cheng, M., Jiao, L., Yan, P., Jiang, H., Wang, R., Qiu, T., et al. (2022). Intelligent tool wear monitoring and multi-step prediction based on deep learning model. Journal of Manufacturing Systems, 62, 286–300.

    Article  Google Scholar 

  • Choudhury, S. K., Jain, V. K., & Rao, C. V. V. R. (1999). On-line monitoring of tool wear in turning using a neural network. International Journal of Machine Tools and Manufacture, 39, 489–504.

    Article  Google Scholar 

  • Chryssolouris, G., & Domroese, M. (1989). An experimental study of strategies for integrating sensor information in machining. CIRP Annals, 38, 425–428.

    Article  Google Scholar 

  • Cica, D., Sredanovic, B., Tesic, S., & Kramar, D. (2020). Predictive modeling of turning operations under different cooling/lubricating conditions for sustainable manufacturing with machine learning techniques. Appl Comput Informatics. https://doi.org/10.1016/j.aci.2020.02.001

    Article  Google Scholar 

  • Corne, R., Nath, C., El Mansori, M., & Kurfess, T. (2017). Study of spindle power data with neural network for predicting real-time tool wear/breakage during inconel drilling. Journal of Manufacturing Systems, 43, 287–295.

    Article  Google Scholar 

  • D’Addona, D. M., Matarazzo, D., Ullah, A. M. M. S., & Teti, R. (2015). Tool wear control through cognitive paradigms. Procedia CIRP, 33, 221–226.

    Article  Google Scholar 

  • D’Addona, D. M., & Teti, R. (2013). Image data processing via neural networks for tool wear prediction. Procedia Cirp, 12, 252–257.

    Article  Google Scholar 

  • D’Addona, D. M., Ullah, A. M. M. S., & Matarazzo, D. (2017). Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing. Journal of Intelligent Manufacturing, 28, 1285–1301.

    Article  Google Scholar 

  • da Silva, R. H. L., da Silva, M. B., & Hassui, A. (2016). A probabilistic neural network applied in monitoring tool wear in the end milling operation via acoustic emission and cutting power signals. Machining Science and Technology, 20, 386–405.

    Article  Google Scholar 

  • Deiab, I., Assaleh, K., & Hammad, F. (2009). On modeling of tool wear using sensor fusion and polynomial classifiers. Mechanical Systems and Signal Processing, 23, 1719–1729.

    Article  Google Scholar 

  • Dornfeld, D. A., & DeVries, M. F. (1990). Neural network sensor fusion for tool condition monitoring. CIRP Annals, 39, 101–105.

    Article  Google Scholar 

  • Drouillet, C., Karandikar, J., Nath, C., Journeaux, A.-C., El Mansori, M., & Kurfess, T. (2016). Tool life predictions in milling using spindle power with the neural network technique. Journal of Manufacturing Processes, 22, 161–168.

    Article  Google Scholar 

  • Durairaj, M., & Gowri, S. (2013). Parametric optimization for improved tool life and surface finish in micro turning using genetic algorithm. Procedia Engineering, 64, 878–87. https://doi.org/10.1016/j.proeng.2013.09.164

    Article  Google Scholar 

  • Dutta, S., Pal, S. K., Mukhopadhyay, S., & Sen, R. (2013). Application of digital image processing in tool condition monitoring: A review. CIRP Journal of Manufacturing Science and Technology, 6, 212–232.

    Article  Google Scholar 

  • Elangovan, M., Devasenapati, S. B., Sakthivel, N. R., & Ramachandran, K. I. (2011). Evaluation of expert system for condition monitoring of a single point cutting tool using principle component analysis and decision tree algorithm. Expert Systems with Applications, 38, 4450–4459.

    Article  Google Scholar 

  • Erden, M. A., Yaşar, N., Korkmaz, M. E., Ayvacı, B., Nimel Sworna Ross, K., & Mia, M. (2021). Investigation of microstructure, mechanical and machinability properties of Mo-added steel produced by powder metallurgy method. The International Journal of Advanced Manufacturing Technology, 284, 2811–2827. https://doi.org/10.1007/s00170-021-07052-z

    Article  Google Scholar 

  • Ertunc, H. M., & Oysu, C. (2004). Drill wear monitoring using cutting force signals. Mechatronics, 14, 533–548.

    Article  Google Scholar 

  • Ezugwu, E. O., Fadare, D. A., Bonney, J., Da Silva, R. B., & Sales, W. F. (2005). Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network. International Journal of Machine Tools and Manufacture, 45, 1375–1385.

    Article  Google Scholar 

  • Ferreira, F. I., de Aguiar, P. R., Lopes, W. N., Martins, C. H. R., de Souza, R. R., Bianchi, E. C., et al. (2019). Inferential measurement of the dresser width for the grinding process automation. International Journal of Advanced Manufacturing Technology, 100, 3055–3066.

    Article  Google Scholar 

  • Fong, K. M., Wang, X., Kamaruddin, S., & Ismadi, M.-Z. (2021). Investigation on universal tool wear measurement technique using image-based cross-correlation analysis. Measurement, 169, 108489.

    Article  Google Scholar 

  • Freyer, B. H., Heyns, P. S., & Theron, N. J. (2014). Comparing orthogonal force and unidirectional strain component processing for tool condition monitoring. Journal of Intelligent Manufacturing, 25, 473–487.

    Article  Google Scholar 

  • Gajate, A., Haber, R., Toro, R., Vega, P., & Bustillo, A. (2012). Tool wear monitoring using neuro-fuzzy techniques: A comparative study in a turning process. Journal of Intelligent Manufacturing, 23, 869–882. https://doi.org/10.1007/s10845-010-0443-y

    Article  Google Scholar 

  • García-Ordás, M. T., Alegre, E., González-Castro, V., & Alaiz-Rodríguez, R. (2017). A computer vision approach to analyze and classify tool wear level in milling processes using shape descriptors and machine learning techniques. International Journal of Advanced Manufacturing Technology, 90, 1947–1961.

    Article  Google Scholar 

  • García-Ordás, M. T., Alegre-Gutiérrez, E., Alaiz-Rodríguez, R., & González-Castro, V. (2018). Tool wear monitoring using an online, automatic and low cost system based on local texture. Mechanical Systems and Signal Processing, 112, 98–112.

    Article  Google Scholar 

  • Ghosh, N., Ravi, Y. B., Patra, A., Mukhopadhyay, S., Paul, S., Mohanty, A. R., et al. (2007). Estimation of tool wear during CNC milling using neural network-based sensor fusion. Mechanical Systems and Signal Processing, 21, 466–479.

    Article  Google Scholar 

  • Gill, S. S., Singh, R., Singh, J., & Singh, H. (2012). Adaptive neuro-fuzzy inference system modeling of cryogenically treated AISI M2 HSS turning tool for estimation of flank wear. Expert Systems with Applications, 39, 4171–4180. https://doi.org/10.1016/j.eswa.2011.09.117

    Article  Google Scholar 

  • Gomes, M. C., Brito, L. C., da Silva, M. B., & Duarte, M. A. V. (2021). Tool wear monitoring in micromilling using Support Vector Machine with vibration and sound sensors. Precision Engineering, 67, 137–151. https://doi.org/10.1016/j.precisioneng.2020.09.025

    Article  Google Scholar 

  • Griffin, J. M. (2018). The prediction of profile deviations from multi process machining of complex geometrical features using combined evolutionary and neural network algorithms with embedded simulation. Journal of Intelligent Manufacturing, 29, 1171–1189.

    Article  Google Scholar 

  • Günay, M., Korkmaz, M. E., & Yaşar, N. (2020). Performance analysis of coated carbide tool in turning of Nimonic 80A superalloy under different cutting environments. Journal of Manufacturing Processes, 56, 678–87. https://doi.org/10.1016/j.jmapro.2020.05.031

    Article  Google Scholar 

  • Gupta, M. K., Mia, M., Pruncu, C. I., Khan, A. M., Rahman, M. A., Jamil, M., et al. (2020). Modeling and performance evaluation of Al2O3, MoS2 and graphite nanoparticle-assisted MQL in turning titanium alloy: An intelligent approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42, 207. https://doi.org/10.1007/s40430-020-2256-z

    Article  Google Scholar 

  • Guzeev, V. I., & Pimenov, D. Y. (2011). Cutting force in face milling with tool wear. Russian Engineering Research, 31, 989.

    Article  Google Scholar 

  • Hashmi, K., Graham, I. D., & Mills, B. (2003). Data selection for turning carbon steel using a fuzzy logic approach. J Mater Process Technol, 135, 44–58. https://doi.org/10.1016/S0924-0136(02)01011-7

    Article  Google Scholar 

  • Heigel, J. C., Whitenton, E., Lane, B., Donmez, M. A., Madhavan, V., & Moscoso-Kingsley, W. (2017). Infrared measurement of the temperature at the tool–chip interface while machining Ti–6Al–4V. Journal of Materials Processing Technology, 243, 123–130. https://doi.org/10.1016/j.jmatprotec.2016.11.026

    Article  Google Scholar 

  • Ho, S. Y., Lee, K. C., Chen, S. S., & Ho, S. J. (2002). Accurate modeling and prediction of surface roughness by computer vision in turning operations using an adaptive neuro-fuzzy inference system. International Journal of Machine Tools and Manufacture, 42, 1441–1446. https://doi.org/10.1016/S0890-6955(02)00078-0

    Article  Google Scholar 

  • Hu, S., Liu, F., He, Y., & Hu, T. (2012). An on-line approach for energy efficiency monitoring of machine tools. Journal of Cleaner Production, 27, 133–140.

    Article  Google Scholar 

  • Huang, Z., Zhu, J., Lei, J., Li, X., & Tian, F. (2019). Tool wear predicting based on multi-domain feature fusion by deep convolutional neural network in milling operations. Journal of Intelligent Manufacturing, 31, 953–966.

    Article  Google Scholar 

  • Hui, Y., Mei, X., Jiang, G., Tao, T., Pei, C., & Ma, Z. (2019). milling tool wear state recognition by vibration signal using a stacked generalization ensemble model. Shock and Vibration, 2019, 1–16.

    Article  Google Scholar 

  • Jackson, M. J., Robinson, G. M., Hyde, L. J., & Rhodes, R. (2006). Neural image processing of the wear of cutting tools coated with thin films. Journal of Materials Engineering and Performance, 15, 223–229.

    Article  Google Scholar 

  • Jain, A. K., & Lad, B. K. (2019). A novel integrated tool condition monitoring system. Journal of Intelligent Manufacturing, 30, 1423–1436.

    Article  Google Scholar 

  • Jang, J.-S. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23, 665–685.

    Article  Google Scholar 

  • Javed, K., Gouriveau, R., Li, X., & Zerhouni, N. (2018). Tool wear monitoring and prognostics challenges: A comparison of connectionist methods toward an adaptive ensemble model. Journal of Intelligent Manufacturing, 29, 1873–1890.

    Article  Google Scholar 

  • Jemielniak, K., Kwiatkowski, L., & Wrzosek, P. (1998). Diagnosis of tool wear based on cutting forces and acoustic emission measures as inputs to a neural network. Journal of Intelligent Manufacturing, 9, 447–455.

    Article  Google Scholar 

  • Junior, P., D’Addona, D. M., Aguiar, P., & Teti, R. (2018). Dressing tool condition monitoring through impedance-based sensors: Part 2—neural networks and k-nearest neighbor classifier approach. Sensors, 18, 4453.

    Article  Google Scholar 

  • Kamarthi, S. V., & Pittner, S. (1997). Fourier and wavelet transform for flank wear estimation—a comparison. Mechanical Systems and Signal Processing, 11, 791–809.

    Article  Google Scholar 

  • Karandikar, J. M., Schmitz, T. L., & Abbas, A. E. (2012). Spindle speed selection for tool life testing using Bayesian inference. Journal of Manufacturing Systems, 31, 403–411.

    Article  Google Scholar 

  • Kassim, A. A., Mian, Z., & Mannan, M. A. (2004). Connectivity oriented fast Hough transform for tool wear monitoring. Pattern Recognit, 37, 1925–1933.

    Article  Google Scholar 

  • Kassim, A. A., Mian, Z., & Mannan, M. A. (2006). Tool condition classification using Hidden Markov model based on fractal analysis of machined surface textures. Machine Vision and Applications, 17, 327–336.

    Article  Google Scholar 

  • Kaya, B., Oysu, C., Ertunc, H. M., & Ocak, H. (2012). A support vector machine-based online tool condition monitoring for milling using sensor fusion and a genetic algorithm. Proc Inst Mech Eng Part B J Eng Manuf, 226, 1808–1818.

    Article  Google Scholar 

  • Kilundu, B., & Dehombreux, P. (2008). Singular spectrum analysis and Machine Learning techniques for tool wear monitoring. Mecanique and Industries, 9, 1–8.

    Article  Google Scholar 

  • Kim, D.-H., Kim, T. J. Y., Wang, X., Kim, M., Quan, Y.-J., Oh, J. W., et al. (2018). Smart machining process using machine learning: A review and perspective on machining industry. International Journal of Precision Engineering and Manufacturing-Green Technology, 5, 555–568.

    Article  Google Scholar 

  • Korkmaz, M. E., & Günay, M. (2018a). Finite element modelling of cutting forces and power consumption in turning of AISI 420 martensitic stainless steel. Arabian Journal for Science and Engineering, 43, 4863–4870. https://doi.org/10.1007/s13369-018-3204-4

    Article  Google Scholar 

  • Korkmaz, M. E., & Günay, M. U. S. T. A. F. A. (2018). Experimental and statistical analysis on machinability of nimonic80A superalloy with pvd coated carbide. Sigma Journal of Engineering and Natural Sciences, 36, 1141–1152.

    Google Scholar 

  • Korkmaz, M. E., Yaşar, N., & Günay, M. (2020). Numerical and experimental investigation of cutting forces in turning of Nimonic 80A superalloy. Engineering Science and Technology, an International Journal, 23, 664–673. https://doi.org/10.1016/j.jestch.2020.02.001

    Article  Google Scholar 

  • Kothuru, A., Nooka, S. P., & Liu, R. (2018). Application of audible sound signals for tool wear monitoring using machine learning techniques in end milling. International Journal of Advanced Manufacturing Technology, 95, 3797–3808.

    Article  Google Scholar 

  • Kovac, P., Rodic, D., Pucovsky, V., Savkovic, B., & Gostimirovic, M. (2014). Multi-output fuzzy inference system for modeling cutting temperature and tool life in face milling. Journal of Mechanical Science and Technology, 28, 4247–4256.

    Article  Google Scholar 

  • Krishnakumar, P., Rameshkumar, K., & Ramachandran, K. I. (2018). Acoustic emission-based tool condition classification in a precision high-speed machining of titanium alloy: A machine learning approach. International Journal of Computational Intelligence and Applications, 17, 1850017.

    Article  Google Scholar 

  • Kumar, A., Pradhan, S. K., & Jain, V. (2019). Experimental investigation and optimization using regression genetic algorithm of hard turning operation with wiper geometry inserts. Materials Today Proceedings, 27, 2724–2730. https://doi.org/10.1016/j.matpr.2019.12.191

    Article  Google Scholar 

  • Kuncheva, L. I. (2014). Combining pattern classifiers: methods and algorithms. John Wiley & Sons.

    Google Scholar 

  • Kuntoğlu, M., Aslan, A., Pimenov, D. Y., Usca, Ü. A., Salur, E., Gupta, M. K., et al. (2021a). A review of indirect tool condition monitoring systems and decision-making methods in turning: Critical analysis and trends. Sensors, 21, 108.

    Article  Google Scholar 

  • Kuntoğlu, M., Aslan, A., Sağlam, H., Pimenov, D. Y., Giasin, K., & Mikolajczyk, T. (2020). Optimization and analysis of surface roughness, flank wear and 5 different sensorial data via tool condition monitoring system in turning of AISI 5140. Sensors, 20, 4377.

    Article  Google Scholar 

  • Kuntoğlu, M., & Sağlam, H. (2021b). ANOVA and fuzzy rule based evaluation and estimation of flank wear, temperature and acoustic emission in turning. CIRP Journal of Manufacturing Science and Technology, 35, 589–603. https://doi.org/10.1016/j.cirpj.2021.07.011

    Article  Google Scholar 

  • Kuntoğlu, M., & Sağlam, H. (2021c). Investigation of signal behaviors for sensor fusion with tool condition monitoring system in turning. Measurement, 173, 108582.

    Article  Google Scholar 

  • Kuntoğlu, M., Salur, E., Gupta, M. K., Sarıkaya, M., & Pimenov, D. Y. (2021d). A state-of-the-art review on sensors and signal processing systems in mechanical machining processes. The International Journal of Advanced Manufacturing Technology, 116, 2711–2735.

    Article  Google Scholar 

  • Kuo, R. J., & Cohen, P. H. (1999). Multi-sensor integration for on-line tool wear estimation through radial basis function networks and fuzzy neural network. Neural Networks, 12, 355–370.

    Article  Google Scholar 

  • Kuram, E., & Ozcelik, B. (2016). Micro-milling performance of AISI 304 stainless steel using Taguchi method and fuzzy logic modelling. Journal of Intelligent Manufacturing, 27, 817–830.

    Article  Google Scholar 

  • LaValle, S. M. (2006). Planning algorithms. Cambridge University Press.

    Book  Google Scholar 

  • Lee, K.-M., Huang, Y., Ji, J., & Lin, C.-Y. (2018). An online tool temperature monitoring method based on physics-guided infrared image features and artificial neural network for dry cutting. IEEE Transactions on Automation Science and Engineering, 15, 1665–1676.

    Article  Google Scholar 

  • Letot, C., Serra, R., Dossevi, M., & Dehombreux, P. (2016). Cutting tools reliability and residual life prediction from degradation indicators in turning process. International Journal of Advanced Manufacturing Technology, 86, 495–506.

    Article  Google Scholar 

  • Li, C. J., & Tzeng, T. C. (2000). Multimilling-insert wear assessment using non-linear virtual sensor, time-frequency distribution and neural networks. Mechanical Systems and Signal Processing, 14, 945–957.

    Article  Google Scholar 

  • Li, H., Wang, W., Li, Z., Dong, L., & Li, Q. (2020). A novel approach for predicting tool remaining useful life using limited data. Mechanical Systems and Signal Processing, 143, 106832.

    Article  Google Scholar 

  • Li, S., & Elbestawi, M. A. (1996). Tool condition monitoring in machining by fuzzy neural networks. Journal of Dynamic Systems, 118, 665–672.

    Google Scholar 

  • Li, X. (2002). A brief review: Acoustic emission method for tool wear monitoring during turning. International Journal of Machine Tools and Manufacture, 42, 157–165.

    Article  Google Scholar 

  • Li, X. Q., Wong, Y. S., & Nee, A. Y. C. (1999). Intelligent tool wear identification based on optical scattering image and hybrid artificial intelligence techniques. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 213, 191–196.

    Article  Google Scholar 

  • Liao, X., Zhou, G., Zhang, Z., Lu, J., & Ma, J. (2019). Tool wear state recognition based on GWO–SVM with feature selection of genetic algorithm. International Journal of Advanced Manufacturing Technology, 104, 1051–1063.

    Article  Google Scholar 

  • Liu, C., Li, Y., Zhou, G., & Shen, W. (2018). A sensor fusion and support vector machine based approach for recognition of complex machining conditions. Journal of Intelligent Manufacturing, 29, 1739–1752.

    Article  Google Scholar 

  • Liu, T. I., Kumagai, A., Wang, Y. C., Song, S. D., Fu, Z., & Lee, J. (2010). On-line monitoring of boring tools for control of boring operations. Robotics and Computer Integrated Manufacturing, 26, 230–239.

    Article  Google Scholar 

  • Martínez-Arellano, G., Terrazas, G., & Ratchev, S. (2019). Tool wear classification using time series imaging and deep learning. International Journal of Advanced Manufacturing Technology, 104, 3647–3662.

    Article  Google Scholar 

  • Maruda, R. W., Feldshtein, E., Legutko, S., & Krolczyk, G. M. (2015). Research on emulsion mist generation in the conditions of minimum quantity cooling lubrication (MQCL). Tehnički vjesnik, 22(5), 1213–1218.

    Google Scholar 

  • Maruda, R. W., Feldshtein, E., Legutko, S., & Krolczyk, G. M. (2016a). Analysis of contact phenomena and heat exchange in the cutting zone under minimum quantity cooling lubrication conditions. Arabian Journal for Science and Engineering, 41, 661–668. https://doi.org/10.1007/s13369-015-1726-6

    Article  Google Scholar 

  • Maruda, R. W., Krolczyk, G. M., Feldshtein, E., Nieslony, P., Tyliszczak, B., & Pusavec, F. (2017a). Tool wear characterizations in finish turning of AISI 1045 carbon steel for MQCL conditions. Wear, 372–373, 54–67. https://doi.org/10.1016/j.wear.2016.12.006

    Article  Google Scholar 

  • Maruda, R. W., Krolczyk, G. M., Feldshtein, E., Pusavec, F., Szydlowski, M., Legutko, S., et al. (2016b). A study on droplets sizes, their distribution and heat exchange for minimum quantity cooling lubrication (MQCL). International Journal of Machine Tools and Manufacture, 100, 81–92. https://doi.org/10.1016/j.ijmachtools.2015.10.008

    Article  Google Scholar 

  • Maruda, R. W., Krolczyk, G. M., Michalski, M., Nieslony, P., & Wojciechowski, S. (2017b). Structural and microhardness changes after turning of the AISI 1045 steel for minimum quantity cooling lubrication. Journal of Materials Engineering and Performance, 26, 431–438. https://doi.org/10.1007/s11665-016-2450-4

    Article  Google Scholar 

  • Maruda, R. W., Krolczyk, G. M., Nieslony, P., Wojciechowski, S., Michalski, M., & Legutko, S. (2016c). The influence of the cooling conditions on the cutting tool wear and the chip formation mechanism. Journal of Manufacturing Processes, 24, 107–15. https://doi.org/10.1016/j.jmapro.2016.08.006

    Article  Google Scholar 

  • Maruda, R. W., Krolczyk, G. M., Wojciechowski, S., Powalka, B., Klos, S., Szczotkarz, N., et al. (2020). Evaluation of turning with different cooling-lubricating techniques in terms of surface integrity and tribologic properties. Tribology International, 148, 106334. https://doi.org/10.1016/j.triboint.2020.106334

    Article  Google Scholar 

  • Maruda, R. W., Krolczyk, G. M., Wojciechowski, S., Zak, K., Habrat, W., & Nieslony, P. (2018). Effects of extreme pressure and anti-wear additives on surface topography and tool wear during MQCL turning of AISI 1045 steel. Journal of Mechanical Science and Technology, 32, 1585–1591. https://doi.org/10.1007/s12206-018-0313-7

    Article  Google Scholar 

  • Masoudi, S., Sima, M., & Tolouei-Rad, M. (2018). Comparative study of ANN and ANFIS models for predicting temperature in machining. Journal of Engineering Science and Technology, 13, 211–225.

    Google Scholar 

  • McParland, D., Baron, S., O’Rourke, S., Dowling, D., Ahearne, E., & Parnell, A. (2019). Prediction of tool-wear in turning of medical grade cobalt chromium molybdenum alloy (ASTM F75) using non-parametric Bayesian models. Journal of Intelligent Manufacturing, 30, 1259–1270. https://doi.org/10.1007/s10845-017-1317-3

    Article  Google Scholar 

  • Mia, M., Khan, M. A., & Dhar, N. R. (2017). Performance prediction of high-pressure coolant assisted turning of Ti-6Al-4V. International Journal of Advanced Manufacturing Technology, 90, 1433–1445.

    Article  Google Scholar 

  • Mikołajczyk, T., Nowicki, K., Bustillo, A., & Pimenov, D. Y. (2018). Predicting tool life in turning operations using neural networks and image processing. Mechanical Systems and Signal Processing, 104, 503–513.

    Article  Google Scholar 

  • Mikołajczyk, T., Nowicki, K., Kłodowski, A., & Pimenov, D. Y. (2017). Neural network approach for automatic image analysis of cutting edge wear. Mechanical Systems and Signal Processing, 88, 100–110.

    Article  Google Scholar 

  • Mohanraj, T., Shankar, S., Rajasekar, R., Sakthivel, N. R., & Pramanik, A. (2020). Tool condition monitoring techniques in milling process—A review. Journal of Materials Research and Technology, 9, 1032–1042.

    Article  Google Scholar 

  • Monostori, L., & Prohaszka, J. (1993). A step towards intelligent manufacturing: Modelling and monitoring of manufacturing processes through artificial neural networks. CIRP Annals, 42, 485–488.

    Article  Google Scholar 

  • Munoa, J., Beudaert, X., Erkorkmaz, K., Iglesias, A., Barrios, A., & Zatarain, M. (2015). Active suppression of structural chatter vibrations using machine drives and accelerometers. CIRP Annals, 64, 385–388. https://doi.org/10.1016/j.cirp.2015.04.106

    Article  Google Scholar 

  • Nakai, M. E., Aguiar, P. R., Guillardi, H., Jr., Bianchi, E. C., Spatti, D. H., & D’Addona, D. M. (2015). Evaluation of neural models applied to the estimation of tool wear in the grinding of advanced ceramics. Expert Systems with Applications, 42, 7026–7035.

    Article  Google Scholar 

  • Ngo, T. (2011). Data mining: practical machine learning tools and technique, by ian h. witten, eibe frank, mark a. hell. ACM SIGSOFT Software Engineering Notes, 36(5), 51–52.

    Article  Google Scholar 

  • Niaki, F. A., Feng, L., Ulutan, D., & Mears, L. (2016a). A wavelet-based data-driven modelling for tool wear assessment of difficult to machine materials. International Journal of Mechatronics and Manufacturing Systems, 9, 97–121.

    Article  Google Scholar 

  • Niaki, F. A., Ulutan, D., & Mears, L. (2016b). Parameter inference under uncertainty in end-milling γ′-strengthened difficult-to-machine alloy. Journal of Manufacturing Science and Engineering, 138, 061014.

    Article  Google Scholar 

  • O’Sullivan, D., & Cotterell, M. (2001). Temperature measurement in single point turning. Journal of Materials Processing Technology, 118, 301–308. https://doi.org/10.1016/S0924-0136(01)00853-6

    Article  Google Scholar 

  • Olufayo, O., & Abou-El-Hossein, K. (2015). Tool life estimation based on acoustic emission monitoring in end-milling of H13 mould-steel. International Journal of Advanced Manufacturing Technology, 81, 39–51.

    Article  Google Scholar 

  • Ong, P., Lee, W. K., & Lau, R. J. H. (2019). Tool condition monitoring in CNC end milling using wavelet neural network based on machine vision. International Journal of Advanced Manufacturing Technology, 104, 1369–1379.

    Article  Google Scholar 

  • Oztemel, E., & Gursev, S. (2020). Literature review of Industry 40 and related technologies. Journal of Intelligent Manufacturing, 31, 127–182.

    Article  Google Scholar 

  • Paliwal, M., & Kumar, U. A. (2009). Neural networks and statistical techniques: A review of applications. Expert Systems with Applications, 36, 2–17.

    Article  Google Scholar 

  • Pan, T., Zhang, J., Yang, L., Zhao, W., Zhang, H., & Lu, B. (2021). Tool breakage monitoring based on the feature fusion of spindle acceleration signal. International Journal of Advanced Manufacturing Technology, 117, 2973–2986.

    Article  Google Scholar 

  • Pandiyan, V., Caesarendra, W., Tjahjowidodo, T., & Tan, H. H. (2018). In-process tool condition monitoring in compliant abrasive belt grinding process using support vector machine and genetic algorithm. Journal of Manufacturing Processes, 31, 199–213.

    Article  Google Scholar 

  • Pandiyan, V., Shevchik, S., Wasmer, K., Castagne, S., & Tjahjowidodo, T. (2020). Modelling and monitoring of abrasive finishing processes using artificial intelligence techniques: A review. Journal of Manufacturing Processes, 57, 114–135.

    Article  Google Scholar 

  • Papandrea, P. J., Frigieri, E. P., Maia, P. R., Oliveira, L. G., & Paiva, A. P. (2020). Surface roughness diagnosis in hard turning using acoustic signals and support vector machine: A PCA-based approach. Appl Acoust, 159, 107102. https://doi.org/10.1016/j.apacoust.2019.107102

    Article  Google Scholar 

  • Pathak, A. D., Warghane, R. S., & Deokar, S. U. (2018). Optimization of cutting parameters in dry turning of AISI A2 tool steel using carbide tool by taguchi based fuzzy logics. Materials Today Proceedings, 5, 5082–90. https://doi.org/10.1016/j.matpr.2017.12.087

    Article  Google Scholar 

  • Patra, K., Pal, S. K., & Bhattacharyya, K. (2007). Artificial neural network based prediction of drill flank wear from motor current signals. Applied Soft Computing, 7, 929–935.

    Article  Google Scholar 

  • Pimenov, D. Y., Bustillo, A., & Mikolajczyk, T. (2018). Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth. Journal of Intelligent Manufacturing, 29, 1045–1061.

    Article  Google Scholar 

  • Proteau, A., Tahan, A., Zemouri, R., & Thomas, M. (2021). Predicting the quality of a machined workpiece with a variational autoencoder approach. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-021-01822-y

    Article  Google Scholar 

  • Quan, Y., Zhou, M., & Luo, Z. (1998). On-line robust identification of tool-wear via multi-sensor neural-network fusion. Engineering Applications of Artificial Intelligence, 11, 717–722.

    Article  Google Scholar 

  • Rao, C. H. S., Rao, D. N., & Rao, R. N. S. (2006). Online prediction of diffusion wear on the flank through tool tip temperature in turning using artificial neural networks. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 220, 2069–2076.

    Article  Google Scholar 

  • Rao, K. V., & Murthy, P. (2018). Modeling and optimization of tool vibration and surface roughness in boring of steel using RSM. ANN and SVM. J Intell Manuf, 29, 1533–1543.

    Article  Google Scholar 

  • Rao, K. V., Vidhu, K. P., Kumar, T. A., Rao, N. N., Murthy, P., & Balaji, M. (2016). An artificial neural network approach to investigate surface roughness and vibration of workpiece in boring of AISI1040 steels. International Journal of Advanced Manufacturing Technology, 83, 919–927.

    Article  Google Scholar 

  • Rehorn, A. G., Jiang, J., & Orban, P. E. (2005). State-of-the-art methods and results in tool condition monitoring: A review. International Journal of Advanced Manufacturing Technology, 26, 693–710.

    Article  Google Scholar 

  • Ren, Q., Balazinski, M., & Baron, L. (2012). High-order interval type-2 Takagi-Sugeno-Kang fuzzy logic system and its application in acoustic emission signal modeling in turning process. International Journal of Advanced Manufacturing Technology, 63, 1057–1063.

    Article  Google Scholar 

  • Ren, Q., Balazinski, M., Baron, L., Jemielniak, K., Botez, R., & Achiche, S. (2014). Type-2 fuzzy tool condition monitoring system based on acoustic emission in micromilling. Information Sciences, 255, 121–134.

    Article  Google Scholar 

  • Ren, Q., Baron, L., Balazinski, M., Botez, R., & Bigras, P. (2015). Tool wear assessment based on type-2 fuzzy uncertainty estimation on acoustic emission. Applied Soft Computing, 31, 14–24.

    Article  Google Scholar 

  • Rivero, A. D., de Lacalle, L. L., & Penalva, M. L. (2008). Tool wear detection in dry high-speed milling based upon the analysis of machine internal signals. Mechatronics, 18, 627–633.

    Article  Google Scholar 

  • Rizal, M., Ghani, J. A., Nuawi, M. Z., & Haron, C. H. C. (2013). Online tool wear prediction system in the turning process using an adaptive neuro-fuzzy inference system. Applied Soft Computing, 13, 1960–1968. https://doi.org/10.1016/j.asoc.2012.11.043

    Article  Google Scholar 

  • Rodić, D., Sekulić, M., Gostimirović, M., Pucovsky, V., & Kramar, D. (2021). Fuzzy logic and sub-clustering approaches to predict main cutting force in high-pressure jet assisted turning. Journal of Intelligent Manufacturing, 32, 21–36.

    Article  Google Scholar 

  • Sadílek, M., Kratochvíl, J., Petrů, J., Čep, R., Zlámal, T., & Stančeková, D. (2014). Cutting tool wear monitoring with the use of impedance layers.

  • Sahali, M. A., Belaidi, I., & Serra, R. (2015). Efficient genetic algorithm for multi-objective robust optimization of machining parameters with taking into account uncertainties. International Journal of Advanced Manufacturing Technology, 77, 677–688.

    Article  Google Scholar 

  • Sahu, N. K., & Andhare, A. B. (2017). Modelling and multiobjective optimization for productivity improvement in high speed milling of Ti–6Al–4V using RSM and GA. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39, 5069–5085.

    Article  Google Scholar 

  • Saikumar, S., & Shunmugam, M. S. (2012). Investigations into high-speed rough and finish end-milling of hardened EN24 steel for implementation of control strategies. International Journal of Advanced Manufacturing Technology, 63, 391–406.

    Article  Google Scholar 

  • Santos, M. C., Machado, A. R., Barrozo, M. A. S., Jackson, M. J., & Ezugwu, E. O. (2015). Multi-objective optimization of cutting conditions when turning aluminum alloys (1350-O and 7075–T6 grades) using genetic algorithm. International Journal of Advanced Manufacturing Technology, 76, 1123–1138.

    Article  Google Scholar 

  • Santos, P., Maudes, J., & Bustillo, A. (2018). Identifying maximum imbalance in datasets for fault diagnosis of gearboxes. Journal of Intelligent Manufacturing, 29, 333–351.

    Article  Google Scholar 

  • Scheffer, C., Engelbrecht, H., & Heyns, P. S. (2005). A comparative evaluation of neural networks and hidden Markov models for monitoring turning tool wear. Neural Computing and Applications, 14, 325–336. https://doi.org/10.1007/s00521-005-0469-9

    Article  Google Scholar 

  • Sen, B., Mia, M., Mandal, U. K., & Mondal, S. P. (2019). GEP-and ANN-based tool wear monitoring: A virtually sensing predictive platform for MQL-assisted milling of Inconel 690. International Journal of Advanced Manufacturing Technology, 105, 395–410.

    Article  Google Scholar 

  • Serin, G., Sener, B., Ozbayoglu, A. M., & Unver, H. O. (2020). Review of tool condition monitoring in machining and opportunities for deep learning. The International Journal of Advanced Manufacturing Technology, 109, 953–974.

    Article  Google Scholar 

  • Shankar, S., Mohanraj, T., & Rajasekar, R. (2019). Prediction of cutting tool wear during milling process using artificial intelligence techniques. International Journal of Computer Integrated Manufacturing, 32, 174–182.

    Article  Google Scholar 

  • Sharma, V., Kumar, P., & Prakash, Misra J. (2020). Cutting force predictive modelling of hard turning operation using fuzzy logic. Materials Today Proceedings, 26, 740–740. https://doi.org/10.1016/j.matpr.2020.01.018

    Article  Google Scholar 

  • Sharma, V. S., Sharma, S. K., & Sharma, A. K. (2007). Cutting tool wear estimation for turning. Journal of Intelligent Manufacturing, 19, 99–108. https://doi.org/10.1007/s10845-007-0048-2

    Article  Google Scholar 

  • Shen, Y., Yang, F., Habibullah, M. S., Ahmed, J., Das, A. K., Zhou, Y., et al. (2020). Predicting tool wear size across multi-cutting conditions using advanced machine learning techniques. Journal of Intelligent Manufacturing, 32, 1–14.

    Google Scholar 

  • Shrivastava, Y., & Singh, B. (2018). Stable cutting zone prediction in CNC turning using adaptive signal processing technique merged with artificial neural network and multi-objective genetic algorithm. European Journal of Mechanics - A/Solids, 70, 238–48. https://doi.org/10.1016/j.euromechsol.2018.03.009

    Article  Google Scholar 

  • Sick, B. (2002). On-line and indirect tool wear monitoring in turning with artificial neural networks: A review of more than a decade of research. Mechanical Systems and Signal Processing, 16, 487–546.

    Article  Google Scholar 

  • Siddhpura, A., & Paurobally, R. (2013). A review of flank wear prediction methods for tool condition monitoring in a turning process. International Journal of Advanced Manufacturing Technology, 65, 371–393.

    Article  Google Scholar 

  • Sofuoğlu, M. A., Çakır, F. H., Kuşhan, M. C., & Orak, S. (2019). Optimization of different non-traditional turning processes using soft computing methods. Soft Computing, 23, 5213–5231. https://doi.org/10.1007/s00500-018-3471-8

    Article  Google Scholar 

  • Sortino, M. (2003). Application of statistical filtering for optical detection of tool wear. International Journal of Machine Tools and Manufacture, 43, 493–497.

    Article  Google Scholar 

  • Sun, H., Cao, D., Zhao, Z., & Kang, X. (2018). A hybrid approach to cutting tool remaining useful life prediction based on the Wiener process. IEEE Transactions on Reliability, 67, 1294–1303.

    Article  Google Scholar 

  • Sun, H., Zhang, J., Mo, R., & Zhang, X. (2020). In-process tool condition forecasting based on a deep learning method. Robotics and Computer-Integrated Manufacturing, 64, 101924.

    Article  Google Scholar 

  • Szczotkarz, N., Mrugalski, R., Maruda, R. W., Królczyk, G. M., Legutko, S., Leksycki, K., et al. (2020). Cutting tool wear in turning 316L stainless steel in the conditions of minimized lubrication. Tribology International, 156, 106813.

    Article  Google Scholar 

  • Teti, R., Jemielniak, K., O’Donnell, G., & Dornfeld, D. (2010). Advanced monitoring of machining operations. CIRP Annals, 59, 717–739.

    Article  Google Scholar 

  • Thoben, K.-D., Wiesner, S., & Wuest, T. (2017). “Industrie 4.0” and smart manufacturing-a review of research issues and application examples. International Journal of Automation Technology, 11, 4–16.

    Article  Google Scholar 

  • Totis, G., & Sortino, M. (2011). Development of a modular dynamometer for triaxial cutting force measurement in turning. International Journal of Machine Tools and Manufacture, 51, 34–42. https://doi.org/10.1016/j.ijmachtools.2010.10.001

    Article  Google Scholar 

  • Twardowski, P., & Wiciak-Pikuła, M. (2019). Prediction of Tool Wear Using Artificial Neural Networks during Turning of Hardened Steel. Materials, 12, 3091.

    Article  Google Scholar 

  • Vasanth, X. A., Paul, P. S., & Varadarajan, A. S. (2020). A neural network model to predict surface roughness during turning of hardened SS410 steel. International Journal of Systems Assurance Engineering and Management, 11, 704–715.

    Article  Google Scholar 

  • Vukelic, D., Simunovic, K., Kanovic, Z., Saric, T., Tadic, B., & Simunovic, G. (2021). Multi-objective optimization of steel AISI 1040 dry turning using genetic algorithm. Neural Computing and Applications, 33, 12445–12475. https://doi.org/10.1007/s00521-021-05877-z

    Article  Google Scholar 

  • Wang, G., & Cui, Y. (2013). On line tool wear monitoring based on auto associative neural network. Journal of Intelligent Manufacturing, 24, 1085–1094.

    Article  Google Scholar 

  • Wang, G., & Feng, X. (2013). Tool wear state recognition based on linear chain conditional random field model. Engineering Applications of Artificial Intelligence, 26, 1421–1427.

    Article  Google Scholar 

  • Wang, G., Yang, Y., & Li, Z. (2014a). Force sensor based tool condition monitoring using a heterogeneous ensemble learning model. Sensors, 14, 21588–21602.

    Article  Google Scholar 

  • Wang, G. F., Yang, Y. W., Zhang, Y. C., & Xie, Q. L. (2014b). Vibration sensor based tool condition monitoring using ν support vector machine and locality preserving projection. Sensors Actuators A Physical, 209, 24–32.

    Article  Google Scholar 

  • Wang, G., Zhang, Y., Liu, C., Xie, Q., & Xu, Y. (2019). A new tool wear monitoring method based on multi-scale PCA. Journal of Intelligent Manufacturing, 30, 113–122.

    Article  Google Scholar 

  • Wang, J., Huang, C. Z., & Song, W. G. (2003). The effect of tool flank wear on the orthogonal cutting process and its practical implications. Journal of Materials Processing Technology, 142, 338–346.

    Article  Google Scholar 

  • Wang, J., Xie, J., Zhao, R., Zhang, L., & Duan, L. (2017). Multisensory fusion based virtual tool wear sensing for ubiquitous manufacturing. Robotics and Computer-Integrated Manufacturing, 45, 47–58.

    Article  Google Scholar 

  • Wang, P., & Gao, R. X. (2015). Adaptive resampling-based particle filtering for tool life prediction. Journal of Manufacturing Systems, 37, 528–534.

    Article  Google Scholar 

  • Wilkinson, P., Reuben, R. L., Jones, J. D. C., Barton, J. S., Hand, D. P., Carolan, T. A., et al. (1999). Tool wear prediction from acoustic emission and surface characteristics via an artificial neural network. Mechanical Systems and Signal Processing, 13, 955–966.

    Article  Google Scholar 

  • Wojciechowski, S., Maruda, R. W., Krolczyk, G. M., & Niesłony, P. (2018). Application of signal to noise ratio and grey relational analysis to minimize forces and vibrations during precise ball end milling. Precision Engineering, 51, 582–596. https://doi.org/10.1016/j.precisioneng.2017.10.014

    Article  Google Scholar 

  • Wojciechowski, S., Maruda, R. W., Nieslony, P., & Krolczyk, G. M. (2016). Investigation on the edge forces in ball end milling of inclined surfaces. International Journal of Mechanical Sciences, 119, 360–369.

    Article  Google Scholar 

  • Wu, X., Liu, Y., Zhou, X., & Mou, A. (2019). Automatic identification of tool wear based on convolutional neural network in face milling process. Sensors, 19, 3817.

    Article  Google Scholar 

  • Xie, Z., Li, J., & Lu, Y. (2018). An integrated wireless vibration sensing tool holder for milling tool condition monitoring. International Journal of Advanced Manufacturing Technology, 95, 2885–2896.

    Article  Google Scholar 

  • Xu, L., Huang, C., Li, C., Wang, J., Liu, H., & Wang, X. (2020a). Estimation of tool wear and optimization of cutting parameters based on novel ANFIS-PSO method toward intelligent machining. Journal of Intelligent Manufacturing, 32, 77–90.

    Article  Google Scholar 

  • Xu, L., Huang, C., Li, C., Wang, J., Liu, H., & Wang, X. (2020b). A novel intelligent reasoning system to estimate energy consumption and optimize cutting parameters toward sustainable machining. Journal of Cleaner Production, 261, 121160.

    Article  Google Scholar 

  • Yang, B., Guo, K., Liu, J., Sun, J., Song, G., Zhu, S., Sun, C., & Jiang, Z. (2020). Vibration singularity analysis for milling tool condition monitoring. International Journal of Mechanical Sciences, 166, 105254.

    Article  Google Scholar 

  • Yang, Z., & Yu, Z. (2012). Grinding wheel wear monitoring based on wavelet analysis and support vector machine. International Journal of Advanced Manufacturing Technology, 62, 107–121.

    Article  Google Scholar 

  • Yen, C.-L., Lu, M.-C., & Chen, J.-L. (2013). Applying the self-organization feature map (SOM) algorithm to AE-based tool wear monitoring in micro-cutting. Mechanical Systems and Signal Processing, 34, 353–366.

    Article  Google Scholar 

  • Yeo, S. H., Khoo, L. P., & Neo, S. S. (2000). Tool condition monitoring using reflectance of chip surface and neural network. Journal of Intelligent Manufacturing, 11, 507–514.

    Article  Google Scholar 

  • Yurtkuran, H., Korkmaz, M. E., & Günay, M. (2016). Modelling and optimization of the surface roughness in high speed hard turning with coated and uncoated CBN insert. Gazi University Journal of Science, 29(4), 987–995.

    Google Scholar 

  • Zafar, T., Kamal, K., Sheikh, Z., Mathavan, S., Ali, U., & Hashmi, H. (2017). A neural network based approach for background noise reduction in airborne acoustic emission of a machining process. Journal of Mechanical Science and Technology, 31, 3171–3182.

    Article  Google Scholar 

  • Zhang, B., & Shin, Y. C. (2018). A multimodal intelligent monitoring system for turning processes. Journal of Manufacturing Processes, 35, 547–558.

    Article  Google Scholar 

  • Zhang, C., Yao, X., Zhang, J., & Jin, H. (2016). Tool condition monitoring and remaining useful life prognostic based on a wireless sensor in dry milling operations. Sensors, 16, 795.

    Article  Google Scholar 

  • Zhang, K., Yuan, H., & Nie, P. (2015). A method for tool condition monitoring based on sensor fusion. Journal of Intelligent Manufacturing, 26, 1011–1026.

    Article  Google Scholar 

  • Zheng, P., Wang, H., Sang, Z., Zhong, R. Y., Liu, Y., Liu, C., et al. (2018). Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives. Frontiers of Mechanical Engineering, 13, 137–50. https://doi.org/10.1007/s11465-018-0499-5

    Article  Google Scholar 

  • Zhu, K., San Wong, Y., & Hong, G. S. (2009). Wavelet analysis of sensor signals for tool condition monitoring: A review and some new results. International Journal of Machine Tools and Manufacture, 49, 537–553.

    Article  Google Scholar 

  • Zuperl, U., Cus, F., & Reibenschuh, M. (2012). Modeling and adaptive force control of milling by using artificial techniques. Journal of Intelligent Manufacturing, 23, 1805–1815.

    Article  Google Scholar 

Download references

Funding

The authors would like to thank for their financial support to the Polısh Natıonal Agency For Academıc Exchange (NAWA) (No. PPN/ULM/2020/1/00121), the Polish National Science Centre (NCN) (Project No. UMO-2020/37/K/ST8/02795), the Spanish Ministry of Science and Innovation (project No. PID2020-119894 GB-I00) and the Junta de Castilla y León (project No BU055P20!), the two last of them cofinanced with European Union FEDER funds.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Danil Yu Pimenov, Szymon Wojciechowski, Vishal S. Sharma or Munish K. Gupta.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pimenov, D.Y., Bustillo, A., Wojciechowski, S. et al. Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review. J Intell Manuf 34, 2079–2121 (2023). https://doi.org/10.1007/s10845-022-01923-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-022-01923-2

Keywords

Navigation