Abstract
Fault diagnosis of mechanical components has been attracting increasing attention. Researches have been carried out to reduce unnecessary breakdowns of machinery. Signal processing approaches are the most commonly used techniques for fault diagnosis tasks. Ontology and semantic web technology have great potential in knowledge representing, organizing and utilizing. In this paper, a hybrid fault diagnosis method for mechanical components is proposed based on ontology and signal analysis (HOS-MCFD). The method is a systematic approach covering the whole process of fault diagnosis: feature extraction from raw data, fault phenomenon identification using continuous mixture Gaussian hidden Markov model and fault knowledge modeling and reasoning using ontology and semantic web technology. A semantic mapping approach is presented to relate signal analysis results to ontology elements. The hybrid method integrates the advantages of signal analysis and ontology. It can be applied to deal with fault diagnosis more accurately, systematically and intelligently. This method is assessed with vibration data of rolling bearings. The experimental results prove the proposed method effective.











Similar content being viewed by others
References
Berners-Lee, T., & Hendler, J. (2001). Publishing on the semantic web–The coming Internet revolution will profoundly affect scientific information. Nature, 410(6832), 1023–1024. doi:10.1038/35074206.
Boashash, B., & Ouelha, S. (2016). Automatic signal abnormality detection using time-frequency features and machine learning: A newborn EEG seizure case study. Knowledge-Based Systems, 106, 38–50. doi:10.1016/j.knosys.2016.05.027.
Boutros, T., & Liang, M. (2011). Detection and diagnosis of bearing and cutting tool faults using hidden Markov models. Mechanical Systems and Signal Processing, 25(6), 2102–2124. doi:10.1016/j.ymssp.2011.01.013.
Cai, B., Liu, H., & Xie, M. (2016). A real-time fault diagnosis methodology of complex systems using object-oriented Bayesian networks. Mechanical Systems and Signal Processing, 80, 31–44. doi:10.1016/j.ymssp.2016.04.019.
Chine, W., Mellit, A., Lughi, V., Malek, A., Sulligoi, G., & Massi Pavan, A. (2016). A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks. Renewable Energy, 90, 501–512. doi:10.1016/j.renene.2016.01.036.
Chow, E., & Willsky, A. (1984). Analytical redundancy and the design of robust failure detection systems. IEEE Transactions on Automatic Control, 29(7), 603–614. doi:10.1109/TAC.1984.1103593.
Dai, X., & Gao, Z. (2013). From model, signal to knowledge: A data-driven perspective of fault detection and diagnosis. IEEE Transactions on Industrial Informatics, 9(4), 2226–2238. doi:10.1109/TII.2013.2243743.
Dendani-Hadiby, N., & Khadir, M. T. (2012). A case based reasoning system based on domain ontology for fault diagnosis of steam turbines. International Journal of Hybrid Information Technology, 5(3), 89–104.
Djebala, A., Babouri, M. K., & Ouelaa, N. (2015). Rolling bearing fault detection using a hybrid method based on Empirical Mode Decomposition and optimized wavelet multi-resolution analysis. The International Journal of Advanced Manufacturing Technology, 79(9–12), 2093–2105. doi:10.1007/s00170-015-6984-7.
Dong, M., & He, D. (2007). Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis. European Journal of Operational Research, 178(3), 858–878. doi:10.1016/j.ejor.2006.01.041.
Dou, D., Yang, J., Liu, J., & Zhao, Y. (2012). A rule-based intelligent method for fault diagnosis of rotating machinery. Knowledge-Based Systems, 36, 1–8. doi:10.1016/j.knosys.2012.05.013.
Dou, D., & Zhou, S. (2016). Comparison of four direct classification methods for intelligent fault diagnosis of rotating machinery. Applied Soft Computing, 46, 459–468. doi:10.1016/j.asoc.2016.05.015.
Du, J., Hu, Y., & Jiang, H. (2011). Boosted mixture learning of Gaussian mixture hidden Markov models based on maximum likelihood for speech recognition. IEEE Transactions on Audio Speech & Language Processing, 19(7), 2091–2100. doi:10.1109/TASL.2011.2112352.
Ebrahimipour, V., & Yacout, S. (2015). Ontology modeling in physical asset integrity management. Cham: Springer International Publishing.
Feng, Z., Liang, M., & Chu, F. (2013). Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples. Mechanical Systems and Signal Processing, 38(1), 165–205. doi:10.1016/j.ymssp.2013.01.017.
Frank, P. M. (1990). Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy—A survey and some new results. Automatica, 26(3), 459–474. doi:10.1016/0005-1098(90)90018-D.
Frank, P. M., & Köppen-Seliger, B. (1997). New developments using AI in fault diagnosis. Engineering Applications of Artificial Intelligence, 10(1), 3–14. doi:10.1016/S0952-1976(96)00072-3.
Gan, M., Wang, C., & Zhu, C. A. (2016). Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings. Mechanical Systems and Signal Processing, 72–73, 92–104. doi:10.1016/j.ymssp.2015.11.014.
Gertler, J. J. (1988). Survey of model-based failure detection and isolation in complex plants. IEEE Control Systems Magazine, 8(6), 3–11. doi:10.1109/37.9163.
Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge Acquisition, 5(2), 199–220. doi:10.1006/knac.1993.1008.
Huang, W., Kong, F., & Zhao, X. (2015). Spur bevel gearbox fault diagnosis using wavelet packet transform and rough set theory. Journal of Intelligent Manufacturing,. doi:10.1007/s10845-015-1174-x.
Isermann, R. (1984). Process fault detection based on modeling and estimation methods—A survey. Automatica, 20(4), 387–404. doi:10.1016/0005-1098(84)90098-0.
Jia, F., Lei, Y., Lin, J., Zhou, X., & Lu, N. (2016). Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mechanical Systems and Signal Processing, 72–73, 303–315. doi:10.1016/j.ymssp.2015.10.025.
Kusiak, A., & Verma, A. (2012). Analyzing bearing faults in wind turbines: A data-mining approach. Renewable Energy, 48, 110–116. doi:10.1016/j.renene.2012.04.020.
Kusiak, A., Zhang, Z., & Verma, A. (2013). Prediction, operations, and condition monitoring in wind energy. Energy, 60, 1–12. doi:10.1016/j.energy.2013.07.051.
Lee, J., Jin, C., Liu, Z., & Davari Ardakani, H. (2017). Introduction to data-driven methodologies for prognostics and health management. In S. Ekwaro-Osire, A. C. Gonçalves, & F. M. Alemayehu (Eds.), Probabilistic prognostics and health management of energy systems (pp. 9–32). Cham: Springer.
Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., & Siegel, D. (2014). Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications. Mechanical Systems and Signal Processing, 42(1–2), 314–334. doi:10.1016/j.ymssp.2013.06.004.
Lei, Y., He, Z., & Zi, Y. (2008). A new approach to intelligent fault diagnosis of rotating machinery. Expert Systems with Applications, 35(4), 1593–1600. doi:10.1016/j.eswa.2007.08.072.
Lei, Y., He, Z., Zi, Y., & Hu, Q. (2007). Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs. Mechanical Systems and Signal Processing, 21(5), 2280–2294. doi:10.1016/j.ymssp.2006.11.003.
Lei, Y., Lin, J., He, Z., & Zuo, M. J. (2013). A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mechanical Systems and Signal Processing, 35(1–2), 108–126. doi:10.1016/j.ymssp.2012.09.015.
Li, R., Sopon, P., & He, D. (2012). Fault features extraction for bearing prognostics. Journal of Intelligent Manufacturing, 23(2), 313–321. doi:10.1007/s10845-009-0353-z.
Li, Z., & Ding, W. (2013). A novel fault diagnosis method for gear transmission systems using combined detection technologies. Research Journal of Applied Sciences Engineering & Technology, 6(18), 3354–3358.
Medina-Oliva, G., Voisin, A., Monnin, M., & Leger, J. (2014). Predictive diagnosis based on a fleet-wide ontology approach. Knowledge-Based Systems, 68, 40–57. doi:10.1016/j.knosys.2013.12.020.
Mehta, P., Werner, A., & Mears, L. (2015). Condition based maintenance-systems integration and intelligence using Bayesian classification and sensor fusion. Journal of Intelligent Manufacturing, 26(2), 331–346. doi:10.1007/s10845-013-0787-1.
Miao, Q., & Makis, V. (2007). Condition monitoring and classification of rotating machinery using wavelets and hidden Markov models. Mechanical Systems and Signal Processing, 21(2), 840–855. doi:10.1016/j.ymssp.2006.01.009.
Nan, C., Khan, F., & Iqbal, M. T. (2008). Real-time fault diagnosis using knowledge-based expert system. Process Safety and Environmental Protection, 86(1), 55–71. doi:10.1016/j.psep.2007.10.014.
Olsson, E., Funk, P., & Bengtsson, M. (2004). Fault diagnosis of industrial robots using acoustic signals and case-based reasoning. In P. Funk & P. A. G. Calero (Eds.), Advances in case-based reasoning (Vol. 3155, pp. 686–701)., Lecture notes in computer science Berlin, Heidelberg: Springer.
Patton, R. J., & Chen, J. (1997). Observer-based fault detection and isolation: Robustness and applications. Control Engineering Practice, 5(5), 671–682. doi:10.1016/S0967-0661(97)00049-X.
Peng, Y., Dong, M., & Zuo, M. J. (2010). Current status of machine prognostics in condition-based maintenance: A review. The International Journal of Advanced Manufacturing Technology, 50(1–4), 297–313. doi:10.1007/s00170-009-2482-0.
Rabiner, L. R. (1986). An introduction to hidden Markov models. PLoS ONE, 9(12), e114089. doi:10.1371/journal.pone.0114089.
Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257–286. doi:10.1109/5.18626.
Raich, A., & Cinar, A. (1994). Statistical process monitoring and disturbance isolation in multivariate continuous processes Advanced Control of Chemical Processes 1994 (451–456). Oxford: Pergamon.
Sahin, S., Tolun, M. R., & Hassanpour, R. (2012). Hybrid expert systems: A survey of current approaches and applications. Expert Systems with Applications, 39(4), 4609–4617. doi:10.1016/j.eswa.2011.08.130.
Shen, C., Wang, D., Kong, F., & Tse, P. W. (2013). Fault diagnosis of rotating machinery based on the statistical parameters of wavelet packet paving and a generic support vector regressive classifier. Measurement, 46(4), 1551–1564. doi:10.1016/j.measurement.2012.12.011.
Shu-Hsien, L. (2005). Expert system methodologies and applications—A decade review from 1995 to 2004. Expert Systems with Applications, 28(1), 93–103. doi:10.1016/j.eswa.2004.08.003.
Tang, X., Zhuang, L., Cai, J., & Li, C. (2010). Multi-fault classification based on support vector machine trained by chaos particle swarm optimization. Knowledge-Based Systems, 23(5), 486–490. doi:10.1016/j.knosys.2010.01.004.
Teng, W., Zhang, X., Liu, Y., Kusiak, A., & Ma, Z. (2017). Prognosis of the remaining useful life of bearings in a wind turbine gearbox. Energies, 10(1), 32. doi:10.3390/en10010032.
Wang, C., Gan, M., & Zhu, C. A. (2015a). Fault feature extraction of rolling element bearings based on wavelet packet transform and sparse representation theory. Journal of Intelligent Manufacturing,. doi:10.1007/s10845-015-1153-2.
Wang, C., Gan, M., & Zhu, C. A. (2015b). Intelligent fault diagnosis of rolling element bearings using sparse wavelet energy based on overcomplete DWT and basis pursuit. Journal of Intelligent Manufacturing,. doi:10.1007/s10845-015-1056-2.
Wang, D., Tang, W. H., & Wu, Q. H. (2010). Ontology-based fault diagnosis for power transformers. Paper presented at the 2010 IEEE Power and Energy Society General Meeting, Providence, RI, USA. doi:10.1109/PES.2010.5589575.
Wang, H., Chen, Y., Chan, C. W. H., Qin, J., & Wang, J. (2012). Online model-based fault detection and diagnosis strategy for VAV air handling units. Energy & Buildings, 55(12), 252–263. doi:10.1016/j.enbuild.2012.08.016.
Wang, H., Li, R., Tang, G., Yuan, H., Zhao, Q., & Cao, X. (2014). A compound fault diagnosis for rolling bearings method based on blind source separation and ensemble empirical mode decomposition. PLoS ONE, 9(10), e109166. doi:10.1371/journal.pone.0109166.
Wang, Y., Li, Q., Chang, M., Chen, H., & Zang, G. (2012). Research on fault diagnosis expert system based on the neural network and the fault tree technology. Procedia Engineering, 31, 1206–1210. doi:10.1016/j.proeng.2012.01.1164.
Wen, H., Zhen, Y., Zhang, H., Chen, A., & Liu, D. (2009). An ontology modeling method of mechanical fault diagnosis system based on RSM. In Fifth International Conference on Semantics, Knowledge and Grid, 2009 (SKG 2009), Zhuhai, China. doi:10.1109/SKG.2009.57.
Wu, C., Chen, T., Jiang, R., Ning, L., & Jiang, Z. (2015). A novel approach to wavelet selection and tree kernel construction for diagnosis of rolling element bearing fault. Journal of Intelligent Manufacturing,. doi:10.1007/s10845-015-1070-4.
Xu, Z., Xuan, J., Shi, T., Wu, B., & Hu, Y. (2009). A novel fault diagnosis method of bearing based on improved fuzzy ARTMAP and modified distance discriminant technique. Expert Systems with Applications, 36(9), 11801–11807. doi:10.1016/j.eswa.2009.04.021.
Yang, B., Han, T., & Kim, Y. (2004). Integration of ART-Kohonen neural network and case-based reasoning for intelligent fault diagnosis. Expert Systems with Applications, 26(3), 387–395. doi:10.1016/j.eswa.2003.09.009.
Zhang, X., Wang, B., & Chen, X. (2015). Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine. Knowledge-Based Systems, 89, 56–85. doi:10.1016/j.knosys.2015.06.017.
Zhi-Ling, Y., Bin, W., Xing-Hui, D., & Hao, L. (2012). Expert system of fault diagnosis for gear box in wind turbine. Systems Engineering Procedia, 4, 189–195. doi:10.1016/j.sepro.2011.11.065.
Zhou, A., Yu, D., & Zhang, W. (2015). A research on intelligent fault diagnosis of wind turbines based on ontology and FMECA. Advanced Engineering Informatics, 29(1), 115–125. doi:10.1016/j.aei.2014.10.001.
Zhou, Q., Yan, P., & Xin, Y. (2017). Research on a knowledge modelling methodology for fault diagnosis of machine tools based on formal semantics. Advanced Engineering Informatics, 32, 92–112. doi:10.1016/j.aei.2017.01.002.
Ziani, R., Felkaoui, A., & Zegadi, R. (2014). Bearing fault diagnosis using multiclass support vector machines with binary particle swarm optimization and regularized Fisher’s criterion. Journal of Intelligent Manufacturing,. doi:10.1007/s10845-014-0987-3.
Zio, E., Baraldi, P., & Gola, G. (2008). Feature-based classifier ensembles for diagnosing multiple faults in rotating machinery. Applied Soft Computing, 8(4), 1365–1380. doi:10.1016/j.asoc.2007.10.005.
Acknowledgements
The work was supported by the “2016 Smart manufacturing project of China (2016ZXFB2002)”. The authors would like to thank the anonymous reviewers for their valuable time and efforts in review.
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
I. Common failure modes and detecting methods of rolling bearings
In addition, there are also other detecting methods, including micro morphology analysis, oil film resistance diagnosis, ultrasonic testing, optical fiber monitoring and diagnosis, ray detection, penetrant testing and clearance measurement.
II. Common feature parameters in time domain of rolling bearings
See Table 10.
III. Common feature parameters in frequency domain of rolling bearings
See Table 11.
IV. Wavelet packet energy extraction process
For a given signal \(x\left( t \right) \), the wavelet packet energy extraction process is:
See Table 12.
Rights and permissions
About this article
Cite this article
Zhou, Q., Yan, P., Liu, H. et al. A hybrid fault diagnosis method for mechanical components based on ontology and signal analysis. J Intell Manuf 30, 1693–1715 (2019). https://doi.org/10.1007/s10845-017-1351-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10845-017-1351-1