A rule-based system for trade-off among energy consumption, tool life, and productivity in machining process | Journal of Intelligent Manufacturing Skip to main content
Log in

A rule-based system for trade-off among energy consumption, tool life, and productivity in machining process

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

With ever-increasing understanding of environmental and societal concerns, the focus of manufacturing industries, worldwide, is fast changing from mere profit-making to ensuring sustainability. The companies are striving hard to make their manufacturing processes more environment-friendly, in addition to being cost effective and time- and resource-efficient. The paper presents an experimental investigation and an application of fuzzy modeling for trade-off among energy consumption, tool life, and productivity of a metal cutting (machining) process. A total of 54 grooving experiments are performed under various pre-determined combinations of the workpiece material hardness, cutting speed, cutting feed, and width of cut. The respective measurements are taken for tool damage, energy consumed, and cutting and feed forces. A fuzzy rule-based system is developed that consists of two modules: optimization and prediction. The former suggests the most suitable settings for the cutting parameters that would lead to accomplishment of various combinations of the objectives related to energy consumption, tool life, and machining productivity. The prediction module works out the predicted values of all the responses based on the finalized values of the four input parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Al-Hazza, M. H. F., Adesta, E. Y. T., Ali, A. M., Agsman, D., & Suprianto, M. Y. (2011). Energy cost modeling for high speed hard turning. Journal of Applied Sciences, 11, 2578–2584.

    Article  ADS  Google Scholar 

  • Arezoo, B., Ridgway, K., & Al-Ahmari, A. M. A. (2000). Selection of cutting tools and conditions of machining operations using an expert system. Computers in Industry, 42(1), 43–58.

    Article  Google Scholar 

  • Ashhab, M. D. S., Breitsprecher, T., & Wartzack, S. (2012). Neural network based modeling and optimization of deep drawing-extrusion combined process. Journal of Intelligent Manufacturing, 1–8. doi:10.1007/s10845-012-0676-z.

  • Balogun, V. A., & Mativenga, P. T. (2013). Modelling of direct energy requirements in mechanical machining processes. Journal of Cleaner Production, 41, 179–186.

    Article  Google Scholar 

  • Briceno, J. F., El-Mounayri, H., & Mukhopadhyay, S. (2002). Selecting an artificial neural network for efficient modeling and accurate simulation of the milling process. International Journal of Machine Tools and Manufacture, 42(6), 663–674.

    Article  Google Scholar 

  • Cakir, M. C., Irfan, O., & Cavdar, K. (2005). An expert system approach for die and mold making operations. Robotics and Computer-Integrated Manufacturing, 21(2), 175–183.

    Article  Google Scholar 

  • Diaz, N., Helu, M., Jayanathan, S., Chen, Y., Horvath, A., & Dornfeld, D. (2010). Environmental analysis of milling machine tool use in various manufacturing environments. In Sustainable systems and technology (ISSST), 2010 IEEE international symposium on (pp. 1–6), Washington, DC.

  • Dietmair, A., & Verl, A. (2009). A generic energy consumption model for decision making and energy efficiency optimisation in manufacturing. International Journal of Sustainable Engineering, 2(2), 123–133.

    Article  Google Scholar 

  • Hashmi, K., El Baradie, M. A., & Ryan, M. (1999). Fuzzy-logic based intelligent selection of machining parameters. Journal of Materials Processing Technology, 94(2), 94–111.

    Google Scholar 

  • Hashmi, K., Graham, I. D., & Mills, B. (2003). Data selection for turning carbon steel using a fuzzy logic approach. Journal of Materials Processing Technology, 135(1), 44–58.

    Article  CAS  Google Scholar 

  • He, Y., Liu, B., Zhang, X., Gao, H., & Liu, X. (2012). A modeling method of task-oriented energy consumption for machining manufacturing system. Journal of Cleaner Production, 23(1), 167–174.

    Article  Google Scholar 

  • Hueting, R., & Reijnders, L. (2004). Broad sustainability contra sustainability: The proper construction of sustainability indicators. Ecological Economics, 50(3), 249–260.

    Article  Google Scholar 

  • Iqbal, A., He, N., Li, L., & Dar, N. U. (2007). A fuzzy expert system for optimizing parameters and predicting performance measures in hard-milling process. Expert Systems with Applications, 32(4), 1020–1027.

    Article  Google Scholar 

  • Iqbal, A., Dar, N. U., He, N., Hammouda, M. M., & Li, L. (2010). Self-developing fuzzy expert system: A novel learning approach, fitting for manufacturing domain. Journal of Intelligent Manufacturing, 21(6), 761–776.

    Article  Google Scholar 

  • Iqbal, A., & Dar, N. U. (2011). Optimal formation of fuzzy rule-base for predicting process’s performance measures. Expert Systems with Applications, 38(5), 4802–4808.

    Article  Google Scholar 

  • Lee, B. Y., Liu, H. S., & Tarng, Y. S. (1998). Modeling and optimization of drilling process. Journal of Materials Processing Technology, 74(1), 149–157.

    Article  Google Scholar 

  • Mativenga, P. T., & Rajemi, M. F. (2011). Calculation of optimum cutting parameters based on minimum energy footprint. CIRP Annals-Manufacturing Technology, 60(1), 149–152.

    Article  Google Scholar 

  • Mori, M., Fujishima, M., Inamasu, Y., & Oda, Y. (2011). A study on energy efficiency improvement for machine tools. CIRP Annals-Manufacturing Technology, 60(1), 145–148.

    Article  Google Scholar 

  • Nandi, A. K., & Davim, J. P. (2009). A study of drilling performances with minimum quantity of lubricant using fuzzy logic rules. Mechatronics, 19(2), 218–232.

    Article  Google Scholar 

  • Ojha, D. K., Dixit, U. S., & Davim, J. P. (2009). A soft computing based optimisation of multi-pass turning processes. International Journal of Materials and Product Technology, 35(1), 145–166.

    Article  Google Scholar 

  • Orchard, R. A. (1998). Fuzzy CLIPS version 6.04A: User’s guide. Canada: National Research Council.

    Google Scholar 

  • Porwal, R. K., Yadava, V., & Ramkumar, J. (2012). Artificial neural network modelling and multi objective optimisation of hole drilling electro discharge micro machining of invar. International Journal of Mechatronics and Manufacturing Systems, 5(5), 470–494.

    Article  Google Scholar 

  • Pusavec, F., Krajnik, P., & Kopac, J. (2010). Transitioning to sustainable production-part I: Application on machining technologies. Journal of Cleaner Production, 18(2), 174–184.

    Article  Google Scholar 

  • Rajemi, M. F., Mativenga, P. T., & Aramcharoen, A. (2010). Sustainable machining: selection of optimum turning conditions based on minimum energy considerations. Journal of Cleaner Production, 18(10), 1059–1065.

    Article  Google Scholar 

  • Tsao, C. C., & Hocheng, H. (2008). Evaluation of thrust force and surface roughness in drilling composite material using Taguchi analysis and neural network. Journal of Materials Processing Technology, 203(1), 342–348.

    Article  CAS  Google Scholar 

  • Wong, S. V., Hamouda, A. M. S., & El-Baradie, M. A. (1999). Generalized fuzzy model for metal cutting data selection. Journal of Materials Processing Technology, 89–90, 310–317.

    Article  Google Scholar 

  • Xie, D., Chen, G. R., Wang, F., & Zhu, J. Q. (2012). Modeling of CNC Machine Tool Energy Consumption and Optimization Study Based on Neural Network and Genetic Algorithm. Applied Mechanics and Materials, 195, 770–776.

    Article  ADS  Google Scholar 

  • Xiong, J., Zhang, G., Hu, J., & Wu, L. (2012). Bead geometry prediction for robotic GMAW-based rapid manufacturing through a neural network and a second-order regression analysis. Journal of Intelligent Manufacturing, 1–7. doi:10.1007/s10845-012-0682-1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asif Iqbal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iqbal, A., Zhang, HC., Kong, L.L. et al. A rule-based system for trade-off among energy consumption, tool life, and productivity in machining process. J Intell Manuf 26, 1217–1232 (2015). https://doi.org/10.1007/s10845-013-0851-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-013-0851-x

Keywords

Navigation