Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel | Journal of Intelligent Manufacturing
Skip to main content

Advertisement

Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

In the present investigation, three different type of support vector machines (SVMs) tools such as least square SVM (LS-SVM), Spider SVM and SVM-KM and an artificial neural network (ANN) model were developed to estimate the surface roughness values of AISI 304 austenitic stainless steel in CNC turning operation. In the development of predictive models, turning parameters of cutting speed, feed rate and depth of cut were considered as model variables. For this purpose, a three-level full factorial design of experiments (DOE) method was used to collect surface roughness values. A feedforward neural network based on backpropagation algorithm was a multilayered architecture made up of 15 hidden neurons placed between input and output layers. The prediction results showed that the all used SVMs results were better than ANN with high correlations between the prediction and experimentally measured values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Al-Ahmari A. M. A. (2007) Predictive machinability models for a selected hard material in turning operations. Journal of Materials Processing Technology 190: 305–311

    Article  Google Scholar 

  • Bağcı E., Işık B. (2006) Investigation of surface roughness in turning unidirectional GFRP composites by using RS methodology and ANN. International Journal of Advanced Manufacturing Technology 31: 10–17

    Article  Google Scholar 

  • Basheer A. C., Dabade U. A., Joshi S. S., Bhanuprasad V. V., Gadre V. M. (2008) Modeling of surface roughness in precison machining of metal matrix composites using ANN. Journal of Materials Processing Technology 197: 439–444

    Article  Google Scholar 

  • Benardos P. G., Vosniakos G. C. (2003) Predicting surface roughness in machining: A review. International Journal of Machine Tools and Manufacture 43: 833–844

    Article  Google Scholar 

  • Burges C. J. C. (1998) A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2: 121–167

    Article  Google Scholar 

  • Canu, S., Grandvalet, Y., Guigue, V., & Rakotomamonjy, A. (2005). SVM and Kernel Methods Matlab Toolbox, Perception Systèmes et Information, INSA de Rouen, Rouen, France.

  • Cao L. J., Tay F. E. H. (2003) Support vector machine with adaptive parameters in financial time series forecasting. IEEE Transactions on Neural Networks 14: 1506–1518

    Article  Google Scholar 

  • Çaydaş U., Hasçalık A. (2008) A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method. Journal of Materials Processing Technology 202: 574–582

    Article  Google Scholar 

  • Chang, P. C., Lin, J. J., & Dzan, W. Y. (2010). Forecasting of manufacturing cost in mobile phone products by case-based reasoning and artificial neural network models. Journal of Intelligent Manufacturing. doi:10.1007/s10845-010-0390-7.

  • Ciftci I. (2006) Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools. Tribology International 39: 565–569

    Article  Google Scholar 

  • Dash P. K., Samantaray S. R., Ganapati P. (2007) Fault classification and section identification of an advanced series-compensated transmission line using support vector machine. IEEE Transactions on Power Delivery 22: 67–73

    Article  Google Scholar 

  • Davim J. P., Gaitonde V. N., Karnik S. R. (2008) Investigation into the effect of cutting conditions on surface roughness in turning of free machining steel by ANNmodels. Journal of Materials Processing Technology 205: 16–23

    Article  Google Scholar 

  • Demuth H., Beale M., Hagan M. (2006) Neural network toolbox 5, user’s guide. The Mathworks, Inc, MA, pp 9–16

    Google Scholar 

  • Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A., & Vapnik, V. (1997). Support vector regression machines. Advances in Neural Information Processing Systems 9, NIPS 1996, 155–161, MIT Press.

  • Ekici S., Yıldırım S., Poyraz M. (2009) A pattern recognition application for distance protection. Journal of The Faculty of Engineering and Architecture of Gazi University 241: 51–56

    Google Scholar 

  • Ezugwu E. O., Fadare D. A., Bonney J., Da Silva R. B., Sales W. F. (2005) Modeling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network. International Journal of Machine Tools and Manufacture 45: 1375–1385

    Article  Google Scholar 

  • Gaitonde, V. N., Karnik, S. R., Figueira, L., & Davim, J. P. (2009) Machinability investigations in hard turning of AISI D2 cold work tool steel with conventional and wiper ceramic inserts. International Journal of Refractory Metals and Hard Materials (in press).

  • Grzesik W., Brol S. (2003) Hybrid approach to surface roughness evaluation in multistage machining processes. Journal of Materials Processing Technology 134: 265–272

    Article  Google Scholar 

  • Hearst, M. A. (1998). Support vector machines. IEEE Intelligent Systems 18–21.

  • Karayel, D. (2008). Prediction and control of surface roughness in CNC lathe using artificial neural network. Journal of Materials Processing Technology.

  • Korkut I., Kasap M., Ciftci I., Seker U. (2004) Determination of optimum cutting parameters during machining of AISI 304 austenitic stainless steel. Materials and Design 25: 303–305

    Article  Google Scholar 

  • Kwok J. (1999) Moderating the outputs of support vector machine classifier. IEEE Transactions on Neural Networks 10: 1018–1031

    Article  Google Scholar 

  • Lee B. Y., Tarng Y.S. (2001) Surface roughness inspection by computer vision in turning operations. International Journal of Machine Tools and Manufacture 41: 1251–1263

    Article  Google Scholar 

  • Muthukrishnan N., Davim J. P. (2009) Optimization of machining parameters of Al/SiC-MMC with ANOVA and ANN analysis. Journal of Materials Processing Technology 209: 225–232

    Article  Google Scholar 

  • Nalbant M., Gökkaya H., Toktaş I., Sur G. (2009) The experimental investigation of the effects of uncoated, PVD- and CVD-coated cemented carbide inserts and cutting parameters on surface roughness in CNC turning and its prediction using artificial neural network. Robotics and Computer Integrated Manufacturing 25: 211–223

    Article  Google Scholar 

  • O’Sullivan D., Cotterell M. (2002) Machinability of austenitic stainless steel SS 303. Journal of Materials Processing Technology 124: 153–159

    Article  Google Scholar 

  • Karpat T., Karpat Y. (2005) Predictive modeling of surface roughness and tool wear in hard turning using regression and neural network. International Journal of Machine Tools and Manufacture 45: 467–479

    Article  Google Scholar 

  • Karpat T., Karpat Y., Figueira L., Davim J. P. (2007) Modeling of surface finish and tool flank wear in turning of AISI D2 steel with ceramic wiper inserts. Journal of Materials Processing Technology 189: 192–198

    Article  Google Scholar 

  • Paiva A. P., Ferreira J. R., Balestrassi P. P. (2007) A multivariate hybrid approach applied to AISI 52100 hardened steel turning optimization. Journal of Materials Processing Technology 189: 26–35

    Article  Google Scholar 

  • Roy S. S. (2006) Design of genetic-fuzzy expert system for predicting surface finish in ultra-precison diamond turning of metal matrix composite. Journal of Materials Processing Technology 173: 337–344

    Article  Google Scholar 

  • Salat R., Osowski S. (2004) Accurate fault location in the power transmission line using support vector machine approach. IEEE Transactions on Power Systems 19: 879–886

    Article  Google Scholar 

  • Sharma V. S., Dhiman S., Schgal R., Sharma S. K. (2008) Estimation of cutting forces and surface roughness for hard turning using neural networks. Journal of Intelligent Manufacturing 19: 473–483

    Article  Google Scholar 

  • Shi D., Gindy N. N. (2007) Tool wear predictive model based on least squares support vector machines. Mechanical Systems and Signal Processing 21: 1799–1814

    Article  Google Scholar 

  • Smola, A. J., & Schölkopf, B. (1998). A tutorial on support vector regression. Technical Report NC2-TR-1998-030, ESPRIT Working Group in Neural and Computational Learning.

  • Suresh P. V. S., Rao P. V., Deshmukh S. G. (2002) A genetic algorithmic approach for optimization of surface roughness prediction model. International Journal of Machine Tools and Manufacture 42: 675–680

    Article  Google Scholar 

  • Surjya K. P., Chakraborty D. (2005) Surface roughness prediction in turning using artificial neural network. Neural Computing and Applications 14: 319–324

    Article  Google Scholar 

  • Suykens, J. A. K., Van Gestel, T., De Brabanter, J., De Moor, B., & Vandewalle, J. (2002). Least squares support vector machines. World Scientific, Singapore, (ISBN 981-238-151-1).

  • Tekiner Z., Yeşilyurt S. (2004) Investigation of the cutting parameters depending on process sound during turning of AISI 304 austenitic stainless steel. Materials and Design 25: 507–513

    Article  Google Scholar 

  • Thukaram D., Khincha H. P., Vijaynarasimha H. P. (2005) Artificial neural network and support vector machine approach for locating faults in radial distribution systems. IEEE Transactions on Power Delivery 20: 710–721

    Article  Google Scholar 

  • Tosun N., Ozler L. (2002) A study of tool life in hot machining using artificial neural networks and regression analysis method. Journal of Materials Processing Technology 124: 99–104

    Article  Google Scholar 

  • Umbrello D., Ambrogio G., Filice L., Shivpuri R. (2008) A hybrid finite element method—Artificial neural network approach for predicting residual stress and the optimal cutting conditions during hard turning of AISI 52100 bearing steel. Materials and Design 29: 873–883

    Article  Google Scholar 

  • Vapnik V. (1998) The support vector method of function estimation. In: Suykens J., Vandewalle J. (eds) Nonlinear modeling: Advanced black-ox techniques. Kluwer, Dordrecht, pp 55–86

    Chapter  Google Scholar 

  • Vojtech, F., & Hlavac, V. (2004). Statistical pattern recognition toolbox for MATLAB (SPRTOOL). User’s Guide; http://cmp.felk.cvut.cz/cmp/cmpsoftware.html.

  • Weston, J., Elisseeff, A., Bakır, G., & Sinz, F. (2006). The spider software package. http://www.kyb.tuebingen.mpg.de/bs/people/spider.

  • Wong S. V., Hamouda A. M. S. (2003) Machinability data representation with artificial neural network. Journal of Materials Processing Technology 138: 538–544

    Article  Google Scholar 

  • Xavior M. A., Adithan M. (2009) Determining the influance of cutting fluids on tool wear and surface roughness during turning of AISI 304 austenitic stainless steel. Journal of Materials Processing Technology 209: 900–909

    Article  Google Scholar 

  • Zhang J.H.R. (2004) A new algorithm of improving fault location based on SVM. Eighth IEE International Conference on Developments in Power System Protection 1: 204–207

    Article  Google Scholar 

  • Zhang J. Z., Chen J. C., Kirby E. D. (2007) The development of an in-process surface roughness adaptive control system in turning operations. Journal of Intelligent Manufacturing 18: 301–311

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulaş Çaydaş.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Çaydaş, U., Ekici, S. Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel. J Intell Manuf 23, 639–650 (2012). https://doi.org/10.1007/s10845-010-0415-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-010-0415-2

Keywords