Wavelet ridges for musical instrument classification | Journal of Intelligent Information Systems Skip to main content
Log in

Wavelet ridges for musical instrument classification

  • Published:
Journal of Intelligent Information Systems Aims and scope Submit manuscript

Abstract

The time-varying frequency structure of musical signals have been analyzed using wavelets by either extracting the instantaneous frequency of signals or building features from the energies of sub-band coefficients. We propose to benefit from a combination of these two approaches and use the time-frequency domain energy localization curves, called as wavelet ridges, in order to build features for classification of musical instrument sounds. We evaluated the representative capability of our feature in different musical instrument classification problems using support vector machine classifiers. The comparison with the features based on parameterizing the wavelet sub-band energies confirmed the effectiveness of the proposed feature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Alm, J. F., & Walker, J. S. (2002). Time-frequency analysis of musical instruments. SIAM Review, 44(3), 457–476.

    Article  MATH  MathSciNet  Google Scholar 

  • Beauchamp, J. W. (ed) (2007). Analysis, synthesis, and perception of musical sounds. Springer.

  • Boashash, B. (1992). Estimating and interpreting the instantaneous frequency of a signal - Part I: Fundamentals. Proceedings of the IEEE, 80(4), 520–538.

    Article  Google Scholar 

  • Carmona, R. A., Hwang, W. L., & Torrésani, B. (1997). Characterization of signals by the ridges of their wavelet transforms. IEEE Transactions on Signal Processing, 45(10), 2586–2590.

    Article  Google Scholar 

  • Carmona, R. A., Hwang, W. L., & Torrésani, B. (1999). Multiridge detection and time-frequency reconstruction. IEEE Transactions on Signal Processing, 47(2), 480–492.

    Article  Google Scholar 

  • Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines. Cambridge University Press.

    Google Scholar 

  • Dai, Y., Ma, Q., & Tang, W. (2008). Efficient wavelet ridge extraction method for asymptotic signal analysis. Review of Scientific Instruments, 79, 124703. doi:10.1063/1.3036984.

    Article  Google Scholar 

  • Delprat, N. (1997). Global frequency modulation laws extraction from the Gabor transform of a signal: A first study of the interacting components case. IEEE Transactions on Speech and Audio Processing, 5(1), 64–71.

    Article  Google Scholar 

  • Delprat, N., Escudié, B., Guillemain, P., Kronland-Martinet, R., Tchamitchian, P., & Torrésani, B. (1992). Asymptotic wavelet and Gabor analysis: Extraction of instantaneous frequencies. IEEE Transactions on Information Theory, 38(2), 644–664.

    Article  MATH  Google Scholar 

  • Deng, J. D., Simmermacher, C., & Cranefield, S. (2008). A study on feature analysis for musical instrument classification. IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics, 38(2), 429–438.

    Article  Google Scholar 

  • Do, M. N., & Vetterli, M. (2002). Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance. IEEE Transactions on Image Processing, 11, 146–158.

    Article  MathSciNet  Google Scholar 

  • Essid, S., Richard, G., & David, B. (2006). Instrument recognition in polyphonic music based on automatic taxonomies. IEEE Transactions on Audio, Speech, and Language Processing, 14(1), 68–80.

    Article  Google Scholar 

  • Every, M. R., & Szymanski, J. E. (2006). Separation of synchronous pitched notes by special filtering of harmonics. IEEE Transactions on Audio, Speech, and Language Processing, 14(5), 1845–1856.

    Article  Google Scholar 

  • Fritts, L. (1997). The University of Iowa electronic music studios musical instrument samples. http://theremin.music.uiowa.edu.

  • Goodwin, M., & Vetterli, M. (1996). Time-frequency signal models for music analysis, transformation, and synthesis. In Proc. of the IEEE-SP international symposium on time-frequency and time-scale analysis (pp 133–136).

  • Guillemain, P., & Kronland-Martinet, R. (1996). Characterization of acoustic signals through continuous linear time-frequency representations. Proceedings of the IEEE, 84(4), 561–585.

    Article  Google Scholar 

  • Hacıhabiboğlu, H., & Canagarajah, C. N. (2002). Musical instrument recognition with wavelet envelopes. In Proc. forum acusticum Sevilla. Sevilla, Spain.

  • Herrera-Boyer, P., Peeters, G., & Dubnov, S. (2003). Automatic classification of musical instrument sounds. Journal of New Music Research, 32(1), 3–21.

    Article  Google Scholar 

  • Herrera-Boyer, P., Klapuri, A., & Davy, M. (2006). Automatic classification of pitched musical instrument sounds. In Signal processing methods for music transcription (pp. 163–200). Springer.

  • Klapuri, A., & Davy, M. (eds) (2006). Signal processing methods for music transcription. Springer.

  • Kostek, B. (2004). Musical instrument classification and duet analysis employing music information retrieval techniques. Proceedings of the IEEE, 92(4), 712–729.

    Article  Google Scholar 

  • Kostek, B. (2005). Perception-based data processing in acoustics. Springer.

  • Kostek, B., & Czyzewski, A. (2001). Representing musical instrument sounds for their automatic classification. Journal of Audio Engineering Society, 49(9), 768–785.

    Google Scholar 

  • Kronland-Martinet, R. (1988). The wavelet transform for analysis, synthesis, and processing of speech and music sounds. Computer Music Journal, 12(4), 11–20.

    Article  Google Scholar 

  • Li, T., & Ogihara, M. (2006). Toward intelligent music information retrieval. IEEE Transactions on Multimedia, 8(3), 564–574.

    Article  Google Scholar 

  • Lin, C. C., Chen, S. H., Truong, T. K., & Chang, Y. (2005). Audio classification and categorization based on wavelets and support vector machine. IEEE Transactions on Speech and Audio Processing, 13(5), 644–651.

    Article  Google Scholar 

  • Lin, J. (2006). Ridges reconstruction based on inverse wavelet transform. Journal of Sound and Vibration, 294, 916–926.

    Article  Google Scholar 

  • Mallat, S. G. (2009). A wavelet tour of signal processing: The sparse way (3rd edn). Academic Press.

  • Newland, D. E. (1994). Harmonic and musical wavelets. Proceedings: Mathematical and Physical Sciences, 444(1922), 605–620.

    Article  MATH  MathSciNet  Google Scholar 

  • Olmo, G., Dovis, F., Benotto, P., Calosso, C., & Passaro, P. (1999). Instrument-independent analysis of music by means of the continuous wavelet transform. In Proc. of the SPIE wavelet applications in signal and image processing VII (Vol. 3813, pp. 716–726). Denver, USA.

  • Özbek, M. E., & Savacı F. A. (2007). Music instrument classification using generalized Gaussian density modeling. In IEEE 15th signal processing and communications applications conference. Eskişehir, Turkey.

  • Özbek, M. E., Delpha, C., & Duhamel, P. (2007). Musical note and instrument classification with likelihood-frequency-time analysis and support vector machines. In European signal processing conference (pp. 941–945). Poznań, Poland.

  • Özkurt, N., & Savacı, F. A. (2005). Determination of wavelet ridges of nonstationary signals by singular value decomposition. IEEE Transactions on Circuits and Systems-II: Express Briefs, 52(8), 480–485.

    Article  Google Scholar 

  • Özkurt, N., & Savacı, F. A. (2006). Reconstruction of nonstationary signals along the wavelet ridges. International Journal of Bifurcation and Chaos, 16(1), 191–198.

    Article  MATH  Google Scholar 

  • Pielemeier, W. J., Wakefield, G. H., & Simoni, M. H. (1996). Time-frequency analysis of musical signals. Proceedings of the IEEE, 84(9), 1216–1230.

    Article  Google Scholar 

  • Pruysers, C., Schnapp, J., & Kaminskyj, I. (2005). Wavelet analysis in musical instrument sound classification. In Proc. of the 8th international symposium on signal processing and its applications (Vol. 1, pp. 1–4).

  • Schölkopf, B., & Smola, A. J. (2002). Learning with Kernels. MIT Press.

  • Sejdić, E., Djurović, I., & Jiang, J. (2009). Time-frequency feature representation using energy concentration: An overview of recent advances. Digital Signal Processing, 19, 153–183.

    Article  Google Scholar 

  • Selesnick, I. W., Baraniuk, R. G., & Kingsbury, N. G. (2005). The dual-tree complex wavelet transform. IEEE Signal Processing Magazine, 22(6), 123–151.

    Article  Google Scholar 

  • Shafi, I., Ahmad, J., Shah, S. I., & Kashif, F. M. (2009). Techniques to obtain good resolution and concentrated time-frequency distributions: A review. EURASIP Journal on Advances in Signal Processing, 2009(673539), 43. doi:10.1155/2009/673539.

    Google Scholar 

  • Shuai, X. F., & Yuan, X. (2006). Instantaneous frequency extraction via wavelet ridge. In IEEE international conference on communications, circuits and systems proceedings (Vol. 1, pp. 253–257).

  • Smith, L. M., & Honing, H. (2008). Time-frequency representation of musical rhythm by continuous wavelets. Journal of Mathematics and Music, 2(2), 81–97.

    Article  MATH  MathSciNet  Google Scholar 

  • Todorovska, M. I. (2001). Estimation of instantaneous frequency of signals using the continuous wavelet transform. Tech. Rep. CE 01-07. University of Southern California, Los Angeles, California.

  • Tse, N. C. F., & Lai, L. L. (2007). Wavelet-based algorithm for signal analysis. EURASIP Journal on Advances in Signal Processing, 2007(38916). doi:10.1155/2007/38916.

  • Tzagkarakis, C., Mouchtaris, A., & Tsakalides, P. (2006). Musical genre classification via generalized Gaussian and alpha-stable modeling. In IEEE international conference on acoustics, speech, and signal processing (Vol. 5, pp. 217–220). Toulouse, France.

  • Tzanetakis, G., Essl, G., & Cook, P. (2001). Audio analysis using the discrete wavelet transform. In WSES international conference on acoustics and music: Theory and applications. Koukounaries, Greece.

  • Vapnik, V. N. (1998). Statistical learning theory. John Wiley and Sons.

  • Vetterli, M., & Kovačević, J. (1995). Wavelets and subband coding. Prentice Hall.

  • Weston, J., Elisseeff, A., Bakır, G., & Sinz, F. (2003). Spider: Object-orientated machine learning library. http://www.kyb.tuebingen.mpg.de/bs/people/spider.

  • Wieczorkowska, A. (2001). Musical sound classification based on wavelet analysis. Fundamenta Informaticae, 47, 175–188.

    MATH  Google Scholar 

  • Wieczorkowska, A. A. (2010). Towards musical data classification via wavelet analysis. Lecture Notes in Computer Science, 1932, 147–165.

    Google Scholar 

  • Wieczorkowska, A. A., & Kubera, E. (2009). Identification of a dominating instrument in polytimbral same-pitch mixes using SVM classifiers with non-linear kernel. Journal of Intelligent Information Systems, doi:10.1007/s10844-009-0098-3.

  • Wieczorkowska, A., & Kubik-Komar, A. (2010). Application of analysis of variance and post hoc comparisons to studying the discriminative power of sound parameters in distinguishing between musical instruments. Journal of Intelligent Information Systems. doi:10.1007/s10844-010-0140-5.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank anonymous reviewers for their comments and suggestions in improving the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Erdal Özbek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özbek, M.E., Özkurt, N. & Savacı, F.A. Wavelet ridges for musical instrument classification. J Intell Inf Syst 38, 241–256 (2012). https://doi.org/10.1007/s10844-011-0152-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10844-011-0152-9

Keywords

Navigation