Agent based intelligent search framework for product information using ontology mapping | Journal of Intelligent Information Systems Skip to main content

Advertisement

Log in

Agent based intelligent search framework for product information using ontology mapping

  • Published:
Journal of Intelligent Information Systems Aims and scope Submit manuscript

Abstract

The Semantic Web and Web services provide many opportunities in various applications such as product search and comparison in electronic commerce. We implemented an intelligent meta-search and recommendation system for products through consideration of multiple attributes by using ontology mapping and Web services. Under the assumption that each shopping site offers product ontology and product search service with Web services, we proposed a meta-search framework to configure a customer’s search intent, make and dispatch proper queries to each shopping site, evaluate search results from shopping sites, and show the customer the relevant product list with associated rankings. Ontology mapping is used for generating proper queries for shopping sites that have different product categories. We also implemented our framework and performed empirical evaluation of our approach with two leading shopping sites in the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ackerman, M., Billsus, D., Gaffney, S., Hettich, S., Khoo, G., & Kim, D. J. (1997). Learning probabilistic user profiles. AI Magazine, 18(2), 47–56.

    Google Scholar 

  • Amazon.com. <http://www.amazon.com/>.

  • Arens, Y., Chee, C., Hsu, C., In, H., & Knoblock, C. (1994). Query processing in an information mediator. In Proceedings of the ARPA/Rome Laboratory Knowledge-Based Planning and Scheduling Initiative Workshop.

  • Aridor, Y., Carmel, D., Lempel, R., Soffer, A., & Maarek, Y. S. (2000). Knowledge agents on the web. Lecture Notes in Computer Science, (1860), 15–26.

  • Azuaje, F., & Bodenreider, O. (2004). Incorporating ontology-driven similarity knowledge into functional genomics: An exploratory study. In 4th IEEE international symposium on BioInformatics and BioEngineering, 317–324.

  • Bayardo, R., Bohrer, W., Brice, R., Cichocki, A., Fowler, J., Helal, A., et al. (1997). InfoSleuth: Agent-based semantic integration of information in open and dynamic environments. In Proceedings of the ACM SIGMOD international conference on management of data, 195–206.

  • Benetti, H., Beneventano, D., Bergamaschi, S., Guerra, F., & Vincini, M. (2002). An information integration framework for e-commerce. IEEE Intelligent Systems, 17(1), 18–25.

    Article  Google Scholar 

  • Buy.com. <http://www.buy.com/>.

  • Chakrabarti, S., van den Berg, M., & Dom, B. (1999). Focused crawling: A new approach to topic-specific web resource discovery. Computer Networks, 31(11), 1623–1640.

    Article  Google Scholar 

  • Chen, Z., Meng, X., Zhu, B., & Fowler, R. H. (2002). WebSail: From on-line learning to web search. Knowledge and Information Systems, 4(2), 219–227.

    Article  Google Scholar 

  • Choi, D. (2004). Semantic web service based intelligent product information search framework for agent and shopping mall. PhD thesis, Chonbuk national University.

  • Doan, A., Madhaven, J., Dhamankar, R., Domingos, P., & Helevy, A. (2003). Learning to match ontologies on the semantic web. The International Journal on Very Large Databases, 12(4), 303–319.

    Article  Google Scholar 

  • EAN.UCC Global Data Dictionary (GDD), <http://www.ean-ucc.org/global_smp/global_data_dictionary.htm>.

  • Ehrig, M., & Sure, Y. (2004). Ontology mapping—An integrated approach. Lecture Notes in Computer Science, (3053), 76–91.

  • Electronic Commerce Code Management Association, <http://www.eccma.org/>.

  • Howe, A. E., & Dreilinger, D. (1997). Savvy search: A metasearch engine that learns which search engines to query. AI Magazine, 18(2), 19–25.

    Google Scholar 

  • Kalfoglou, Y., & Schorelmmer, M. (2003). Ontology mapping: The state of the art. The Knowledge Engineering Review, 18(1), 1–32.

    Article  Google Scholar 

  • Kerschberg, L., Kim, W., & Scime, A. (2003). A personalizable agent for semantic taxonomy-based web search. Lecture Notes in Computer Science, 2564, 3–34.

    Google Scholar 

  • Knoblock, C., Minton, S., Ambite, J., Ashishm, N., Modi,, P., Muslea, I., et al. (1998). Modeling web sources for information integration. In Proceedings of the fifteenth national conference on artificial intelligence and tenth innovative applications of artificial intelligence conference, 211–218.

  • Lawrence, S., & Giles, C. L. (1998). Context and page analysis for improved web search. IEEE Internet Computing, 2(4), 38–46.

    Article  Google Scholar 

  • Lawrence, S., & Giles, C. L. (1999). Accessibility of information on the web. Nature, 400, 107–109.

    Article  Google Scholar 

  • Melnik, S., Garcia-Molina, H., & Rahm, H. (2002). Similarity flooding: A versatile graph matching algorithm. In 18th International Conference on Data Engineering(ICDE), 117–128.

  • Mena, E., Illarramendi, A., Kashyap, V., & Sheth, A. (2000). OBSERVER: An approach for query processing in global information systems based on interoperation across pre-existing ontologies. International Journal on Distributed and Parallel Databases, 8(2), 223–272.

    Article  Google Scholar 

  • Miller, G. A. (1995). WordNet a lexical database for English. Communications of the ACM, 38(11), 39–41.

    Article  Google Scholar 

  • Minsky, M. (1981). A framework for representing knowledge. In J. Haugeland (Ed.), Mind design. Cambridge, MA: MIT.

    Google Scholar 

  • Noy, N. F., & Musen, M. A. (2003). The PROMPT suite: Interactive tools for ontology merging and mapping. International Journal of Human–Computer Studies, 59(6), 983–1024.

    Article  Google Scholar 

  • O’Keefe, R. M., & McEachern, T. (1998). Web based customer decision support systems. Communications of the ACM, 41, 71–78.

    Article  Google Scholar 

  • Open Directory Project. <http://www.dmoz.com>.

  • Prud’hommeaux, E., & Seaborne, A. SPARQL query language for RDF, W3C working draft <http://www.w3.org/TR/rdf-sparql-query/>.

  • RDF Data Access Working Group <http://www.w3.org/2001/sw/DataAccess/>.

  • Seaborne, A. (2004). RDQL—A query language for RDF, W3C member submission. (http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/).

  • Selberg, E., & Etzioni, O. (1997). The metaCrawler architecture for resource aggregation on the web. IEEE Expert, 12(1), 11–14.

    Article  Google Scholar 

  • Semantic Web <http://www.w3.org/2001/sw/>.

  • Veltman, K. H. (2001). Syntactic and semantic interoperability: New approaches to knowledge and the semantic web. New Review of Information Networking, 7, 159–184.

    Article  Google Scholar 

  • Web Services Activity <http://www.w3.org/2002/ws/Activity>.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangun Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, W., Choi, D.W. & Park, S. Agent based intelligent search framework for product information using ontology mapping. J Intell Inf Syst 30, 227–247 (2008). https://doi.org/10.1007/s10844-006-0026-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10844-006-0026-8

Keywords

Navigation