Abstract
Transcranial Direct brain stimulation (tDCS) is commonly used in order to modulate cortical networks activity during physiological processes through the application of weak electrical fields with scalp electrodes. Cathodal stimulation has been shown to decrease brain excitability in the context of epilepsy, with variable success. However, the cellular mechanisms responsible for the acute and the long-lasting effect of tDCS remain elusive. Using a novel approach of computational modeling that combines detailed but functionally integrated neurons we built a physiologically-based thalamocortical column. This model comprises 10,000 individual neurons made of pyramidal cells, and 3 types of gamma-aminobutyric acid (GABA) -ergic cells (VIP, PV, and SST) respecting the anatomy, layers, projection, connectivity and neurites orientation. Simulating realistic electric fields in term of intensity, main results showed that 1) tDCS effects are best explained by modulation of the presynaptic probability of release 2) tDCS affects the dynamic of cortical network only if a sufficient number of neurons are modulated 3)VIP GABAergic interneurons of the superficial layer of the cortex are especially affected by tDCS 4) Long lasting effect depends on glutamatergic synaptic plasticity.
Similar content being viewed by others
References
Abraham, W. C. (2008). Metaplasticity: Tuning synapses and networks for plasticity. Nature Reviews Neuroscience, 9(5), 387–387. https://doi.org/10.1038/nrn2356.
Arain, F. M., Boyd, K. L., & Gallagher, M. J. (2012). Decreased viability and absence-like epilepsy in mice lacking or deficient in the GABAA receptor α1 subunit. Epilepsia, 53(8), e161–e165. https://doi.org/10.1111/j.1528-1167.2012.03596.x.
Attwell, D., & Gibb, A. (2005). Neuroenergetics and the kinetic design of excitatory synapses. Nature Reviews Neuroscience, 6(11), 841–849. https://doi.org/10.1038/nrn1784.
Avramescu, S., & Timofeev, I. (2008). Synaptic strength modulation after cortical trauma: A role in Epileptogenesis. Journal of Neuroscience, 28(27), 6760–6772. https://doi.org/10.1523/JNEUROSCI.0643-08.2008.
Biabani, M., Aminitehrani, M., Zoghi, M., Farrell, M., Egan, G., & Jaberzadeh, S. (2018). The effects of transcranial direct current stimulation on short-interval intracortical inhibition and intracortical facilitation: A systematic review and meta-analysis. Reviews in the Neurosciences, 29(1), 99–114. https://doi.org/10.1515/revneuro-2017-0023.
Bienenstock, E. L., Cooper, L. N., & Munro, P. W. (1982). Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 2(1), 32–48.
Bikson, M., Ghai, R. S., Baraban, S. C., & Durand, D. M. (1999). Modulation of burst frequency, duration, and amplitude in the zero-Ca(2+) model of epileptiform activity. Journal of Neurophysiology, 82, 2262–2270.
Bikson, M., Inoue, M., Akiyama, H., Deans, J. K., Fox, J. E., Miyakawa, H., & Jefferys, J. G. R. (2004). Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. The Journal of Physiology, 557(Pt 1), 175–190. https://doi.org/10.1113/jphysiol.2003.055772.
Braitenberg, V., & Schüz, A. (2013). Cortex: Statistics and geometry of neuronal connectivity. Springer Science & Business Media.
Branco, T., & Staras, K. (2009). The probability of neurotransmitter release: Variability and feedback control at single synapses. Nature Reviews Neuroscience, 10(5), 373–383.
Cardin, J. A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L. H., & Moore, C. I. (2009). Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature, 459(7247), 663–667. https://doi.org/10.1038/nature08002.
Cooper, L. N., & Bear, M. F. (2012). The BCM theory of synapse modification at 30: Interaction of theory with experiment. Nature Reviews Neuroscience, 13(11), 798–810.
Cossart, R., Dinocourt, C., Hirsch, J. C., Merchan-Perez, A., De Felipe, J., Ben-Ari, Y., et al. (2001). Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy. Nature Neuroscience, 4(1), 52–62. https://doi.org/10.1038/82900.
Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D., & Bikson, M. (2009). Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation, 2, 201–207.e1.
Dayan, E., Censor, N., Buch, E. R., Sandrini, M., & Cohen, L. G. (2013). Noninvasive brain stimulation: From physiology to network dynamics and back. Nature Neuroscience, 16(7), 838–844. https://doi.org/10.1038/nn.3422.
Esmaeilpour, Z., Marangolo, P., Hampstead, B. M., Bestmann, S., Galletta, E., Knotkova, H., et al. (2018). Incomplete evidence that increasing current intensity of tDCS boosts outcomes. Brain Stimulation, 11, 310–321.
Farrant, M., & Nusser, Z. (2005). Variations on an inhibitory theme: Phasic and tonic activation of GABAA receptors. Nature Reviews Neuroscience, 6(3), 215–229. https://doi.org/10.1038/nrn1625.
Fauth, M., Wörgötter, F., & Tetzlaff, C. (2015). The formation of multi-synaptic connections by the interaction of synaptic and structural plasticity and their functional consequences. PLoS Computational Biology, 11(1), e1004031. https://doi.org/10.1371/journal.pcbi.1004031.
Filmer, H. L., Dux, P. E., & Mattingley, J. B. (2014). Applications of transcranial direct current stimulation for understanding brain function. Trends in Neurosciences, 37(12), 742–753. https://doi.org/10.1016/j.tins.2014.08.003.
Fisher, R. S., van Emde Boas, W., Blume, W., Elger, C., Genton, P., Lee, P., & Engel, J. (2005). Epileptic seizures and epilepsy: definitions proposed by the international league against epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia, 46(4), 470–472. https://doi.org/10.1111/j.0013-9580.2005.66104.x.
Fritsch, B., Reis, J., Martinowich, K., Schambra, H. M., Ji, Y., Cohen, L. G., & Lu, B. (2010). Direct current stimulation promotes BDNF-dependent synaptic plasticity: Potential implications for motor learning. Neuron, 66(2), 198–204. https://doi.org/10.1016/j.neuron.2010.03.035.
Ghai, R. S., Bikson, M., & Durand, D. M. (2000). Effects of applied electric fields on low-calcium epileptiform activity in the CA1 region of rat hippocampal slices. Journal of Neurophysiology, 84, 274–280.
Gil, Z., Connors, B. W., & Amitai, Y. (1999). Efficacy of Thalamocortical and Intracortical synaptic connections: Quanta, innervation, and reliability. Neuron, 23(2), 385–397. https://doi.org/10.1016/S0896-6273(00)80788-6.
González, O. C., Krishnan, G. P., Chauvette, S., Timofeev, I., Sejnowski, T., & Bazhenov, M. (2015). Modeling of age-dependent Epileptogenesis by differential homeostatic synaptic scaling. Journal of Neuroscience, 35(39), 13448–13462. https://doi.org/10.1523/JNEUROSCI.5038-14.2015.
Gschwind, M., & Seeck, M. (2016). Transcranial direct-current stimulation as treatment in epilepsy. Expert Review of Neurotherapeutics, 16(12), 1427–1441. https://doi.org/10.1080/14737175.2016.1209410.
Harris, K. D., & Mrsic-Flogel, T. D. (2013). Cortical connectivity and sensory coding. Nature, 503(7474), 51–58. https://doi.org/10.1038/nature12654.
Harris, K. D., & Shepherd, G. M. G. (2015). The neocortical circuit: Themes and variations. Nature Neuroscience, 18(2), 170–181. https://doi.org/10.1038/nn.3917.
Hiratani, N., & Fukai, T. (2018). Redundancy in synaptic connections enables neurons to learn optimally. Proceedings of the National Academy of Sciences of the United States of America, 115(29), E6871–E6879. https://doi.org/10.1073/pnas.1803274115.
Jackson, M. P., Rahman, A., Lafon, B., Kronberg, G., Ling, D., Parra, L. C., & Bikson, M. (2016). Animal models of transcranial direct current stimulation: Methods and mechanisms. Clinical Neurophysiology, 127(11), 3425–3454. https://doi.org/10.1016/j.clinph.2016.08.016.
Jefferys, J. G. R., Deans, J., Bikson, M., & Fox, J. (2003). Effects of weak electric fields on the activity of neurons and neuronal networks. Radiation Protection Dosimetry, 106, 321–323.
Jehi, L. (2018). The epileptogenic zone: Concept and definition. Epilepsy Currents, 18(1), 12–16. https://doi.org/10.5698/1535-7597.18.1.12.
Ji, X., Zingg, B., Mesik, L., Xiao, Z., Zhang, L. I., & Tao, H. W. (2016). Thalamocortical innervation pattern in mouse auditory and visual cortex: Laminar and cell-type specificity. Cerebral Cortex (New York, NY), 26(6), 2612–2625. https://doi.org/10.1093/cercor/bhv099.
Jiang, X., Shen, S., Cadwell, C. R., Berens, P., Sinz, F., Ecker, A. S., et al. (2015). Principles of connectivity among morphologically defined cell types in adult neocortex. Science (New York, N.Y.), 350(6264), aac9462. https://doi.org/10.1126/science.aac9462.
Kabakov, A. Y., Muller, P. A., Pascual-Leone, A., Jensen, F. E., & Rotenberg, A. (2012). Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation in isolated rat hippocampus. Journal of Neurophysiology, 107(7), 1881–1889. https://doi.org/10.1152/jn.00715.2011.
Krause, B., Márquez-Ruiz, J., & Kadosh, R. C. (2013). The effect of transcranial direct current stimulation: A role for cortical excitation/inhibition balance? Frontiers in Human Neuroscience, 7. https://doi.org/10.3389/fnhum.2013.00602.
Kuramoto, E., Furuta, T., Nakamura, K. C., Unzai, T., Hioki, H., & Kaneko, T. (2009). Two types of Thalamocortical projections from the motor thalamic nuclei of the rat: A single neuron-tracing study using viral vectors. Cerebral Cortex, 19(9), 2065–2077. https://doi.org/10.1093/cercor/bhn231.
Kurbatova, P., Wendling, F., Kaminska, A., Rosati, A., Nabbout, R., Guerrini, R., et al. (2016). Dynamic changes of depolarizing GABA in a computational model of epileptogenic brain: Insight for Dravet syndrome. Experimental Neurology, 283(Pt A), 57–72. https://doi.org/10.1016/j.expneurol.2016.05.037.
Lefaucheur, J.-P., Antal, A., Ayache, S. S., Benninger, D. H., Brunelin, J., Cogiamanian, F., Cotelli, M., de Ridder, D., Ferrucci, R., Langguth, B., Marangolo, P., Mylius, V., Nitsche, M. A., Padberg, F., Palm, U., Poulet, E., Priori, A., Rossi, S., Schecklmann, M., Vanneste, S., Ziemann, U., Garcia-Larrea, L., & Paulus, W. (2017). Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 128(1), 56–92. https://doi.org/10.1016/j.clinph.2016.10.087.
Leite, J. P., Neder, L., Arisi, G. M., Carlotti, C. G., Assirati, J. A., & Moreira, J. E. (2005). Plasticity, synaptic strength, and epilepsy: What can we learn from ultrastructural data? Epilepsia, 46(s5), 134–141.
Lévesque, M., Herrington, R., Hamidi, S., & Avoli, M. (2016). Interneurons spark seizure-like activity in the entorhinal cortex. Neurobiology of Disease, 87, 91–101. https://doi.org/10.1016/j.nbd.2015.12.011.
Liebetanz, D., Nitsche, M. A., Tergau, F., & Paulus, W. (2002). Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain: A Journal of Neurology, 125(Pt 10), 2238–2247.
Lopantsev, V., Both, M., & Draguhn, A. (2009). Rapid plasticity at inhibitory and excitatory synapses in the hippocampus induced by ictal epileptiform discharges. European Journal of Neuroscience, 29(6), 1153–1164. https://doi.org/10.1111/j.1460-9568.2009.06663.x.
Lopes da Silva, F. H., Vos, J. E., Mooibroek, J., & van Rotterdam, A. (1980). Relative contributions of intracortical and thalamo-cortical processes in the generation of alpha rhythms, revealed by partial coherence analysis. Electroencephalography and Clinical Neurophysiology, 50(5), 449–456. https://doi.org/10.1016/0013-4694(80)90011-5.
Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: An embarrassment of riches. Neuron, 44(1), 5–21.
Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., & Wu, C. (2004). Interneurons of the neocortical inhibitory system. Nature Reviews Neuroscience, 5(10), 793–807. https://doi.org/10.1038/nrn1519.
Márquez-Ruiz, J., Leal-Campanario, R., Sánchez-Campusano, R., Molaee-Ardekani, B., Wendling, F., Miranda, P. C., Ruffini, G., Gruart, A., & Delgado-García, J. M. (2012). Transcranial direct-current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits. Proceedings of the National Academy of Sciences of the United States of America, 109(17), 6710–6715. https://doi.org/10.1073/pnas.1121147109.
McGuire, B. A., Wiesel, T. N., & Gilbert, C. D. (1984). Input to layer 4 of cat striate. The Journal of Neuroscience, 4(12), 13.
Meador, K. J. (2007). The basic science of memory as it applies to epilepsy: Basic science of memory as it applies to epilepsy. Epilepsia, 48, 23–25. https://doi.org/10.1111/j.1528-1167.2007.01396.x.
Meyer, H. S., Wimmer, V. C., Oberlaender, M., de Kock, C. P. J., Sakmann, B., & Helmstaedter, M. (2010). Number and laminar distribution of neurons in a Thalamocortical projection column of rat Vibrissal cortex. Cerebral Cortex, 20(10), 2277–2286. https://doi.org/10.1093/cercor/bhq067.
Miranda, P. C., Lomarev, M., & Hallett, M. (2006). Modeling the current distribution during transcranial direct current stimulation. Clinical Neurophysiology, 117, 1623–1629.
Modolo, J., Denoyer, Y., Wendling, F., Benquet, P. (2018). Physiological effects of low-magnitude electric fields on brain activity: advances from in vitro, in vivo and in silico models. Current Opinion Biomedical Engineering, 8, 38–44.
Mohan, H., Verhoog, M. B., Doreswamy, K. K., Eyal, G., Aardse, R., Lodder, B. N., Goriounova, N. A., Asamoah, B., B Brakspear, A. B., Groot, C., van der Sluis, S., Testa-Silva, G., Obermayer, J., Boudewijns, Z. S., Narayanan, R. T., Baayen, J. C., Segev, I., Mansvelder, H. D., & de Kock, C. P. (2015). Dendritic and axonal architecture of individual pyramidal neurons across layers of adult human Neocortex. Cerebral Cortex, 25(12), 4839–4853. https://doi.org/10.1093/cercor/bhv188.
Mountcastle, V. B. (1997). The columnar organization of the neocortex. Brain, 120(4), 701–722. https://doi.org/10.1093/brain/120.4.701.
Murakami, S., & Okada, Y. (2006). Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals: MEG/EEG signals of neocortical neurons. The Journal of Physiology, 575(3), 925–936. https://doi.org/10.1113/jphysiol.2006.105379.
Naruse, Y., Matani, A., Miyawaki, Y., & Okada, M. (2010). Influence of coherence between multiple cortical columns on alpha rhythm: A computational modeling study. Human Brain Mapping, 31(5), 703–715. https://doi.org/10.1002/hbm.20899.
Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899–1901.
Nitsche, M. A., Fricke, K., Henschke, U., Schlitterlau, A., Liebetanz, D., Lang, N., et al. (2003). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. The Journal of Physiology, 553(Pt 1), 293–301. https://doi.org/10.1113/jphysiol.2003.049916.
O’Kusky, J., & Colonnier, M. (1982). A laminar analysis of the number of neurons, glia, and synapses in the visual cortex (area 17) of adult macaque monkeys. The Journal of Comparative Neurology, 210(3), 278–290. https://doi.org/10.1002/cne.902100307.
Packer, A. M., McConnell, D. J., Fino, E., & Yuste, R. (2013). Axo-dendritic overlap and laminar projection can explain interneuron connectivity to pyramidal cells. Cerebral Cortex (New York, N.Y.: 1991), 23(12), 2790–2802. https://doi.org/10.1093/cercor/bhs210.
Pelletier, S. J., Lagacé, M., St-Amour, I., Arsenault, D., Cisbani, G., Chabrat, A., et al. (2015). The morphological and molecular changes of brain cells exposed to direct current electric field stimulation. International Journal of Neuropsychopharmacology, 18(5). https://doi.org/10.1093/ijnp/pyu090.
Peters, A., Payne, B. R., & Budd, J. (1994). A numerical analysis of the Geniculocortical input to striate cortex in the monkey. Cerebral Cortex, 4(3), 215–229. https://doi.org/10.1093/cercor/4.3.215.
Pitkänen, A., & Engel, J. (2014). Past and present definitions of Epileptogenesis and its biomarkers. Neurotherapeutics, 11(2), 231–241. https://doi.org/10.1007/s13311-014-0257-2.
Prönneke, A., Scheuer, B., Wagener, R. J., Möck, M., Witte, M., & Staiger, J. F. (2015). Characterizing VIP neurons in the barrel cortex of VIPcre/tdTomato mice reveals layer-specific differences. Cerebral Cortex, 25(12), 4854–4868. https://doi.org/10.1093/cercor/bhv202.
Purves, D., Augustine, G. J., Fitzpatrick, D., Katz, L. C., LaMantia, A.-S., McNamara, J. O., & Williams, S. M. (2001). An Overview of Cortical Structure. http://www.ncbi.nlm.nih.gov/books/NBK10870/. .
Rahman, A., Reato, D., Arlotti, M., Gasca, F., Datta, A., Parra, L. C., & Bikson, M. (2013). Cellular effects of acute direct current stimulation: Somatic and synaptic terminal effects. The Journal of Physiology, 591(10), 2563–2578.
Rahman, A., Lafon, B., Parra, L. C., & Bikson, M. (2017). Direct current stimulation boosts synaptic gain and cooperativity in vitro. The Journal of Physiology, 595(11), 3535–3547. https://doi.org/10.1113/JP273005.
Reato, D., Rahman, A., Bikson, M., & Parra, L. C. (2010). Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(45), 15067–15079. https://doi.org/10.1523/JNEUROSCI.2059-10.2010.
Rudy, B., Fishell, G., Lee, S., & Hjerling-Leffler, J. (2011). Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Developmental Neurobiology, 71(1), 45–61. https://doi.org/10.1002/dneu.20853.
Sadleir, R. J., Vannorsdall, T. D., Schretlen, D. J., & Gordon, B. (2010). Transcranial direct current stimulation (tDCS) in a realistic head model. NeuroImage, 51, 1310–1318.
San-juan, D., Morales-Quezada, L., Orozco Garduño, A. J., Alonso-Vanegas, M., González-Aragón, M. F., Espinoza López, D. A., et al. (2015). Transcranial direct current stimulation in epilepsy. Brain Stimulation, 8(3), 455–464. https://doi.org/10.1016/j.brs.2015.01.001.
Sellaro, R., Derks, B., Nitsche, M. A., Hommel, B., van den Wildenberg, W. P. M., van Dam, K., & Colzato, L. S. (2015). Reducing prejudice through brain stimulation. Brain Stimulation, 8(5), 891–897. https://doi.org/10.1016/j.brs.2015.04.003.
Shamas, M., Benquet, P., Merlet, I., Khalil, M., El Falou, W., Nica, A., & Wendling, F. (2018). On the origin of epileptic high frequency oscillations observed on clinical electrodes. Clinical Neurophysiology, 129(4), 829–841. https://doi.org/10.1016/j.clinph.2018.01.062.
Sohal, V. S., Zhang, F., Yizhar, O., & Deisseroth, K. (2009). Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature, 459(7247), 698–702. https://doi.org/10.1038/nature07991.
Spruston, N. (2008). Pyramidal neurons: Dendritic structure and synaptic integration. Nature Reviews Neuroscience, 9(3), 206–221. https://doi.org/10.1038/nrn2286.
Squire, L. R. (2013). Fundamental Neuroscience. Academic Press.
Stagg, C. J., Best, J. G., Stephenson, M. C., O’Shea, J., Wylezinska, M., Kincses, Z. T., et al. (2009). Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(16), 5202–5206. https://doi.org/10.1523/JNEUROSCI.4432-08.2009.
Stagg, C. J., Antal, A., & Nitsche, M. A. (2018). Physiology of Transcranial Direct Current Stimulation: The Journal of ECT, 1. https://doi.org/10.1097/YCT.0000000000000510.
Swann, J. W., & Rho, J. M. (2014). How is homeostatic plasticity important in epilepsy? Advances in Experimental Medicine and Biology, 813, 123–131. https://doi.org/10.1007/978-94-017-8914-1_10.
Thomson, A. M., & Bannister, A. P. (2003). Interlaminar connections in the neocortex. Cerebral Cortex, 13(1), 5–14.
Thomson, A. M., & Lamy, C. (2007). Functional maps of neocortical local circuitry. Frontiers in Neuroscience, 1, 19–42. https://doi.org/10.3389/neuro.01.1.1.002.2007.
Tlamsa, A. P., & Brumberg, J. C. (2010). Organization and morphology of thalamocortical neurons of mouse ventral lateral thalamus. Somatosensory & Motor Research, 27(1), 34–43. https://doi.org/10.3109/08990221003646736.
Traub, R. D., Whittington, M. A., Stanford, I. M., & Jefferys, J. G. (1996). A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature, 383(6601), 621–624. https://doi.org/10.1038/383621a0.
Tremblay, R., Lee, S., & Rudy, B. (2016). GABAergic interneurons in the Neocortex: From cellular properties to circuits. Neuron, 91(2), 260–292. https://doi.org/10.1016/j.neuron.2016.06.033.
Wang, Y., Toledo-Rodriguez, M., Gupta, A., Wu, C., Silberberg, G., Luo, J., & Markram, H. (2004). Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. The Journal of Physiology, 561(Pt 1), 65–90. https://doi.org/10.1113/jphysiol.2004.073353.
Wendling, F., Bartolomei, F., Bellanger, J. J., & Chauvel, P. (2002). Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. The European Journal of Neuroscience, 15(9), 1499–1508.
Williams, L. E., & Holtmaat, A. (2019). Higher-order Thalamocortical inputs gate synaptic long-term potentiation via Disinhibition. Neuron, 101(1), 91-102.e4. https://doi.org/10.1016/j.neuron.2018.10.049.
Wong, M., & Guo, D. (2013). Dendritic spine pathology in epilepsy: Cause or consequence? Neuroscience, 251, 141–150. https://doi.org/10.1016/j.neuroscience.2012.03.048.
Zito, K., & Scheuss, V. (2009). NMDA receptor function and physiological modulation. In Encyclopedia of Neuroscience (pp. 1157–1164). Elsevier. http://linkinghub.elsevier.com/retrieve/pii/B9780080450469012250. Accessed 18 May 2016.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Action Editor: Steven J. Schiff
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Denoyer, Y., Merlet, I., Wendling, F. et al. Modelling acute and lasting effects of tDCS on epileptic activity. J Comput Neurosci 48, 161–176 (2020). https://doi.org/10.1007/s10827-020-00745-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10827-020-00745-6