Exact analytical results for integrate-and-fire neurons driven by excitatory shot noise | Journal of Computational Neuroscience Skip to main content
Log in

Exact analytical results for integrate-and-fire neurons driven by excitatory shot noise

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

A neuron receives input from other neurons via electrical pulses, so-called spikes. The pulse-like nature of the input is frequently neglected in analytical studies; instead, the input is usually approximated to be Gaussian. Recent experimental studies have shown, however, that an assumption underlying this approximation is often not met: Individual presynaptic spikes can have a significant effect on a neuron’s dynamics. It is thus desirable to explicitly account for the pulse-like nature of neural input, i.e. consider neurons driven by a shot noise – a long-standing problem that is mathematically challenging. In this work, we exploit the fact that excitatory shot noise with exponentially distributed weights can be obtained as a limit case of dichotomous noise, a Markovian two-state process. This allows us to obtain novel exact expressions for the stationary voltage density and the moments of the interspike-interval density of general integrate-and-fire neurons driven by such an input. For the special case of leaky integrate-and-fire neurons, we also give expressions for the power spectrum and the linear response to a signal. We verify and illustrate our expressions by comparison to simulations of leaky-, quadratic- and exponential integrate-and-fire neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abramowitz, M., & Stegun, I.A. (1972). Handbook of mathematical functions with formulas, graphs and mathematical tables. New York: Dover.

    Google Scholar 

  • Badel, L., Lefort, S., Brette, R., Petersen, C.C., Gerstner, W., & Richardson, M.J. (2008). Dynamic IV curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. Journal of Neurophysiology, 99(2), 656–666.

    Article  PubMed  Google Scholar 

  • Bena, I. (2006). Dichotomous Markov noise: exact results for out-of-equilibrium systems. International Journal of Modern Physics B, 20(20), 2825–2888.

    Article  Google Scholar 

  • Boucsein, C., Tetzlaff, T., Meier, R., Aertsen, A., & Naundorf, B. (2009). Dynamical response properties of neocortical neuron ensembles: multiplicative versus additive noise. Journal of Neuroscience, 29(4), 1006–1010.

    Article  CAS  PubMed  Google Scholar 

  • Braitenberg, V., & Schüz, A. (1998). Cortex: statistics and geometry of neuronal connectivity. Heidelberg, Berlin: Springer.

    Book  Google Scholar 

  • van den Broeck, C. (1983). On the relation between white shot noise, Gaussian white noise, and the dichotomic Markov process. Journal of Statistical Physics, 31(3), 467–483.

  • Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience, 8(3), 183–208.

    Article  CAS  PubMed  Google Scholar 

  • Brunel, N., & Latham, P.E. (2003). Firing rate of the noisy quadratic integrate-and-fire neuron. Neural Computation, 15(10), 2281–2306.

    Article  PubMed  Google Scholar 

  • Brunel, N., & Sergi, S. (1998). Firing frequency of leaky intergrate-and-fire neurons with synaptic current dynamics. Journal of Theoretical Biology, 195(1), 87–95.

    Article  CAS  PubMed  Google Scholar 

  • Brunel, N., Chance, F.S., Fourcaud, N., & Abbott, L.F. (2001). Effects of synaptic noise and filtering on the frequency response of spiking neurons. Physical Review Letters, 86, 2186–2189.

    Article  CAS  PubMed  Google Scholar 

  • Doose, J., Doron, G., Brecht, M., & Lindner, B. (2016). Noisy juxtacellular stimulation in vivo leads to reliable spiking and reveals high-frequency coding in single neurons. The Journal of Neuroscience, 36(43), 11,120–11,132.

    Article  CAS  Google Scholar 

  • Droste, F. (2015). Signal transmission in stochastic neuron models with non-white or non-Gaussian noise. Humboldt-Universität zu Berlin: PhD thesis.

    Google Scholar 

  • Droste, F., & Lindner, B. (2014). Integrate-and-fire neurons driven by asymmetric dichotomous noise. Biological Cybernetics, 108(6), 825–843.

    Article  PubMed  Google Scholar 

  • Droste, F., & Lindner, B. (2017). Exact results for power spectrum and susceptibility of a leaky integrate-and-fire neuron with two-state noise. Physical Review E, 95, 012–411.

    Article  Google Scholar 

  • Fourcaud, N., & Brunel, N. (2002). Dynamics of the firing probability of noisy integrate-and-fire neurons. Neural Computation, 14(9), 2057–2110.

    Article  PubMed  Google Scholar 

  • Fourcaud-Trocmé, N., Hansel, D., Van Vreeswijk, C., & Brunel, N. (2003). How spike generation mechanisms determine the neuronal response to fluctuating inputs. The Journal of Neuroscience, 23(37), 11,628–11,640.

  • Gardiner, C.W. (1985). Handbook of stochastic methods. Heidelberg: Springer.

    Google Scholar 

  • Gerstein, G.L., & Mandelbrot, B. (1964). Random walk models for the spike activity of a single neuron. Biophysical Journal, 4, 41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helias, M., Deger, M., Diesmann, M., & Rotter, S. (2010a). Equilibrium and response properties of the integrate-and-fire neuron in discrete time. Frontiers in Computational Neuroscience, 3, 29.

  • Helias, M., Deger, M., Rotter, S., & Diesmann, M. (2010b). Instantaneous non-linear processing by pulse-coupled threshold units. PLoS Conput Biol, 6(9), e1000–929.

  • Helias, M., Deger, M., Rotter, S., & Diesmann, M. (2011). Finite post synaptic potentials cause a fast neuronal response. Frontiers in Neuroscience, 5, 19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holden, A.V. (1976). Models of the stochastic activity of neurones. Heidelberg: Springer.

    Book  Google Scholar 

  • Ikegaya, Y., Sasaki, T., Ishikawa, D., Honma, N., Tao, K., Takahashi, N., Minamisawa, G., Ujita, S., & Matsuki, N. (2013). Interpyramid spike transmission stabilizes the sparseness of recurrent network activity. Cerebral Cortex, 23(2), 293–304.

    Article  PubMed  Google Scholar 

  • Ilin, V., Malyshev, A., Wolf, F., & Volgushev, M. (2013). Fast computations in cortical ensembles require rapid initiation of action potentials. Journal of Neuroscience, 33, 2281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobsen, M., & Jensen, A.T. (2007). Exit times for a class of piecewise exponential Markov processes with two-sided jumps. Stochastic Processes and their Applications, 117(9), 1330–1356.

    Article  Google Scholar 

  • Lefort, S., Tomm, C., Sarria, J.C.F., & Petersen, C.C. (2009). The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron, 61(2), 301–316.

    Article  CAS  PubMed  Google Scholar 

  • Lindner, B., & Schimansky-Geier, L. (2001). Transmission of noise coded versus additive signals through a neuronal ensemble. Physical Review Letters, 86, 2934–2937.

    Article  CAS  PubMed  Google Scholar 

  • Lindner, B., Schimansky-Geier, L., & Longtin, A. (2002). Maximizing spike train coherence or incoherence in the leaky integrate-and-fire model. Physical Review E, 66, 031–916.

    Google Scholar 

  • Lindner, B., Longtin, A., & Bulsara, A. (2003). Analytic expressions for rate and CV of a type I neuron driven by white Gaussian noise. Neural Computation, 15(8), 1761–1788.

    Article  Google Scholar 

  • Loebel, A., Silberberg, G., Helbig, D., Markram, H., Tsodyks, M., & Richardson, M.J. (2009). Multiquantal release underlies the distribution of synaptic efficacies in the neocortex. Frontiers in Computational Neuroscience 3.

  • Ly, C., & Tranchina, D. (2007). Critical analysis of dimension reduction by a moment closure method in a population density approach to neural network modeling. Neural Computation, 19, 2032.

    Article  PubMed  Google Scholar 

  • Mankin, R., Ainsaar, A., & Reiter, E. (1999). Trichotomous noise-induced transitions. Physical Review E, 60, 1374–1380.

    Article  CAS  Google Scholar 

  • Markram, H., Lübke, J., Frotscher, M., Roth, A., & Sakmann, B. (1997). Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. Journal of Physiology, 500(Pt 2), 409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masoliver, J. (1987). First-passage times for non-Markovian processes: Shot noise. Physical Review A, 35(9), 3918.

    Article  CAS  Google Scholar 

  • Moreno, R., de La Rocha, J., Renart, A., & Parga, N. (2002). Response of spiking neurons to correlated inputs. Physical Review Letters, 89(28), 288–101.

  • Moreno-Bote, R., Renart, A., & Parga, N. (2008). Theory of input spike auto-and cross-correlations and their effect on the response of spiking neurons. Neural Computation, 20(7), 1651–1705.

    Article  PubMed  Google Scholar 

  • Novikov, A., Melchers, R., Shinjikashvili, E., & Kordzakhia, N. (2005). First passage time of filtered Poisson process with exponential shape function. Probabilistic Engineering Mechanics, 20(1), 57–65.

    Article  Google Scholar 

  • Nykamp, D.Q., & Tranchina, D. (2000). A population density approach that facilitates large-scale modeling of neural networks: Analysis and an application to orientation tuning. Journal of Computational Neuroscience, 8, 19.

    Article  CAS  PubMed  Google Scholar 

  • Ostojic, S., Szapiro, G., Schwartz, E., Barbour, B., Brunel, N., & Hakim, V. (2015). Neuronal morphology generates high-frequency firing resonance. Journal of Neuroscience, 35(18), 7056–7068.

    Article  CAS  PubMed  Google Scholar 

  • Ricciardi, L.M., & Sacerdote, L. (1979). The Ornstein-Uhlenbeck process as a model for neuronal activity. Biological Cybernetics, 35, 1.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, M.J., & Gerstner, W. (2005). Synaptic shot noise and conductance fluctuations affect the membrane voltage with equal significance. Neural Computation, 17(4), 923–947.

    Article  PubMed  Google Scholar 

  • Richardson, M.J., & Swarbrick, R. (2010). Firing-rate response of a neuron receiving excitatory and inhibitory synaptic shot noise. Physical Review Letters, 105(17), 178–102.

    Article  Google Scholar 

  • Richardson, M.J.E. (2004). Effects of synaptic conductance on the voltage distribution and firing rate of spiking neurons. Physical Review E, 69(5 Pt 1), 051–918.

    Google Scholar 

  • Richardson, M.J.E., & Gerstner, W. (2006). Statistics of subthreshold neuronal voltage fluctuations due to conductance-based synaptic shot noise. Chaos, 16(2), 026–106.

    Article  Google Scholar 

  • de la Rocha, J., Doiron, B., Shea-Brown, E., Josic, K., & Reyes, A. (2007). Correlation between neural spike trains increases with firing rate. Nature, 448, 802.

  • Rosenbaum, R., & Josic, K. (2011). Mechanisms that modulate the transfer of spiking correlations. Neural Computation, 23, 1261.

    Article  PubMed  Google Scholar 

  • Schwalger, T., Droste, F., & Lindner, B. (2015). Statistical structure of neural spiking under non-Poissonian or other non-white stimulation. Journal of Computational Neuroscience, 39, 29–51.

    Article  PubMed  Google Scholar 

  • Siegert, A.J.F. (1951). On the first passage time probability problem. Physical Review, 81, 617–623.

    Article  Google Scholar 

  • Sirovich, L. (2003). Dynamics of neuronal populations: eigenfunction theory; some solvable cases. Network, 14 (2), 249–272.

    Article  PubMed  Google Scholar 

  • Sirovich, L., Omurtag, A., & Knight, B. (2000). Dynamics of neuronal populations: The equilibrium solution. SIAM Journal on Applied Mathematics, 60(6), 2009–2028.

    Article  Google Scholar 

  • Song, S., Sjöström, P.J., Reigl, M., Nelson, S., & Chklovskii, D.B. (2005). Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biology, 3(3), e68.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stein, R.B. (1965). A theoretical analysis of neuronal variability. Biophysical Journal, 5, 173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein, R.B., French, A.S., & Holden, A.V. (1972). The frequency response, coherence, and information capacity of two neuronal models. Biophysical Journal, 12, 295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tchumatchenko, T., Malyshev, A., Wolf, F., & Volgushev, M. (2011). Ultrafast Population Encoding by Cortical Neurons. The Journal of Neuroscience, 31, 12–171.

    Article  Google Scholar 

  • Thomson, A.M., Deuchars, J., & West, D.C. (1993). Large, deep layer pyramid-pyramid single axon EPSPs in slices of rat motor cortex display paired pulse and frequency-dependent depression, mediated presynaptically and self-facilitation, mediated postsynaptically. Journal of Neurophysiology, 70(6), 2354– 2369.

    CAS  PubMed  Google Scholar 

  • Tsurui, A., & Osaki, S. (1976). On a first-passage problem for a cumulative process with exponential decay. Stochastic Processes and their Applications, 4(1), 79–88.

    Article  Google Scholar 

  • Tuckwell, H.C. (1988). Introduction to theoretical neurobiology: (Vol. 2): nonlinear and stochastic theories Vol. 8. Cambridge: Cambridge University Press.

  • Vilela, R.D., & Lindner, B. (2009a). Are the input parameters of white noise driven integrate and fire neurons uniquely determined by rate and CV? Journal of Theoretical Biology, 257(1), 90–99.

  • Vilela, R.D., & Lindner, B. (2009b). Comparative study of different integrate-and-fire neurons: Spontaneous activity, dynamical response, and stimulus-induced correlation. Physical Review E, 80, 031–909.

  • Wolff, L., & Lindner, B. (2008). Method to calculate the moments of the membrane voltage in a model neuron driven by multiplicative filtered shot noise. Physical Review E, 77, 041–913.

    Article  Google Scholar 

  • Wolff, L., & Lindner, B. (2010). Mean, variance, and autocorrelation of subthreshold potential fluctuations driven by filtered conductance shot noise. Neural Computation, 22(1), 94–120.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the BMBF (FKZ:01GQ1001A), the DFG research training group GRK1589/1, and a DFG research grant (LI 1046/2-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Droste.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest

Additional information

Action Editor: Brent Doiron

Appendix A: Expressions for ϕ(v) for various neuron models

Appendix A: Expressions for ϕ(v) for various neuron models

Here, we list explicit expressions for

$$ {\phi}(v) = \frac{v}{a} + \tau_{\mathrm{m}} r_{\text{in}} {\int}^{v} dx\; \frac{1}{f(x)} $$
(27)

for PIF, LIF and QIF neurons.

  • PIF (f(v) = μ):

    $$ {\phi}(v) = v \left( \frac{1}{a} + \frac{\tau_{\mathrm{m}} r_{\text{in}}}{\mu} \right). $$
    (28)
  • LIF (f(v) = μv):

    $$ {\phi}(v)= \frac{v}{a} - \tau_{\mathrm{m}} r_{\text{in}} \ln(|\mu-v|). $$
    (29)
  • QIF (f(v) = μ + v 2):

    $$ {\phi}(v)\,=\, \frac{v}{a} + \frac{\tau_{\mathrm{m}} r_{\text{in}}}{\sqrt{|\mu|}} \left\{\begin{array}{lll} \arctan\left( \frac{v}{\sqrt{\mu}} \right) & \mu > 0 \\ \!-\text{arctanh}\left( \frac{v}{\sqrt{-\mu}} \right) & \,-\,\sqrt{-\mu} < v \!<\! \sqrt{\,-\,\mu} \\ -\text{arccoth}\left( \frac{v}{\sqrt{-\mu}} \right) & \text{otherwise} \\ \end{array}\right.. $$
    (30)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Droste, F., Lindner, B. Exact analytical results for integrate-and-fire neurons driven by excitatory shot noise. J Comput Neurosci 43, 81–91 (2017). https://doi.org/10.1007/s10827-017-0649-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-017-0649-5

Keywords

Navigation