A model of multisecond timing behaviour under peak-interval procedures | Journal of Computational Neuroscience Skip to main content
Log in

A model of multisecond timing behaviour under peak-interval procedures

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this study, the authors developed a fundamental theory of interval timing behaviour, inspired by the learning-to-time (LeT) model and the scalar expectancy theory (SET) model, and based on quantitative analyses of such timing behaviour. Our experiments used the peak-interval procedure with rats. The proposed model of timing behaviour comprises clocks, a regulator, a mixer, a response, and memory. Using our model, we calculated the basic clock speeds indicated by the subjects’ behaviour under such peak procedures. In this model, the scalar property can be defined as a kind of transposition, which can then be measured quantitatively. The Akaike information criterion (AIC) values indicated that the current model fit the data slightly better than did the SET model. Our model may therefore provide a useful addition to SET for the analysis of timing behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Abbreviations. FI schedule, fixed interval schedule; PI procedure, peak-interval procedure.

  2. Abbreviations. SET, the scalar expectancy theory; LeT model, the learning-to-time model.

  3. Abbreviation. BeT, the behavioural theory-of-timing model.

  4. Abbreviation. PD, Poisson decomposition.

  5. Abbreviation. ITI, intertrial interval.

  6. Abbreviation. AIC, the Akaike information criterion.

References

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transaction Automatic Control, 19, 716–723.

    Article  Google Scholar 

  • Allman, M.J., Teki, S., Griffiths, T.D., Meck, W.H (2014). Properties of the internal clock: First- and second-order principles of subjective time. Annual Review of Psychology, 65, 743–771.

    Article  PubMed  Google Scholar 

  • Alper, J.S., & Bridger, M. (1997). Mathematics, models and Zeno’s paradoxes. Synthese, 110, 143–166.

    Article  Google Scholar 

  • Beckmann, J.S., & Young, M.E (2009). Stimulus dynamics and temporal discrimination: Implications for pacemakers. Journal of Experimental Psychology: Animal Behavior Processes, 35, 525–537.

    PubMed  Google Scholar 

  • Buhusi, C.V., & Meck, W.H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nature Reviews Neuroscience, 6(10), 755–765.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, R.K., & Meck, W.H (2007). Prenatal choline supplementation increases sensitivity to time by reducing non-scalar sources of variance in adult temporal processing. Brain Research, 1186, 242–254.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Church, R.M. (1984). Properties of the internal clock. Annals of The New York Academy of Sciences, 423, 566–582.

    Article  CAS  PubMed  Google Scholar 

  • Church, R.M., Miller, K.D., Meck, W.H., Gibbon, J. (1991). Symmetrical and asymmetrical sources of variance in temporal generalization. Animal Learning & Behavior, 19, 207–214.

    Article  Google Scholar 

  • Church, R.M. (2003). A concise introduction to scalar timing theory. In: W. H. Meck (Ed.) In Functional and Neural Mechanisms of Interval Timing, Methods & New Frontiers in Neuroscience. CRCPress LLC, Boca Raton, Florida, (pp. 3–22).

  • Clément, A., & Droit-Volet, S. (2006). Counting in a time discrimination task in children and adults. Behavioural Processes, 71, 164–171.

    Article  PubMed  Google Scholar 

  • Dayan, P., & Abbott, L.F. (2001). Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Cambridge, Massachusetts: MIT Press.

    Google Scholar 

  • Fetterman, J.G., & Killeen, P.R. (1991). Adjusting the pacemaker. Learning and Motivation, 22, 226–252.

    Article  Google Scholar 

  • Fetterman, J.G., Killeen, P.R., Hall, S. (1998). Watching the clock. Behavioural Processes, 44, 211–224.

  • Gibbon, J. (1977). Scalar expectancy theory and Weber’s law in animal timing. Psychological Review, 84, 279–325.

    Article  Google Scholar 

  • Gibbon, J., Church, R.M., Meck, W.H (1984). Scalar timing in memory. Annals of The New York Academy of Sciences, 423, 52–77.

    Article  CAS  PubMed  Google Scholar 

  • Grondin, S. (2001). From physical time to the first and second moments of psychological time. Psychological Bulletin, 127, 22–44.

    Article  CAS  PubMed  Google Scholar 

  • Killeen, P.R. (1975). On the temporal control of behavior. Psychological Review, 82, 89–115.

    Article  Google Scholar 

  • Killeen, P.R., & Fetterman, J.G. (1988). A behavioral theory of timing. Psychological Review, 95, 274–295.

    Article  CAS  PubMed  Google Scholar 

  • Killeen, P.R., & Taylor, T.J. (2000). How the propagation of error through stochastic counters affects time discrimination and other psychophysical judgments. Psychological Review, 107, 430–459.

    Article  CAS  PubMed  Google Scholar 

  • Kirkpatrick-Steger, K., Miller, S., Betti, C., Wasserman, E. (1996). Cyclic responding by pigeons on the peak timing procedure. Journal of Experimental Psychology: Animal Behavior Processes, 22, 447–460.

    CAS  PubMed  Google Scholar 

  • McAuley, J.D., Miller, J.P., Pang, K.C.H. (2006). Modeling the effects of the NMDA receptor antagonist MK-801 on timing in rats. Behavioral Neuroscience, 120, 1163–1168.

    Article  CAS  PubMed  Google Scholar 

  • Machado, A. (1997). Learning the temporal dynamics of behavior. Psychological Review, 104, 241–265.

    Article  CAS  PubMed  Google Scholar 

  • Machado, A., & Guilhardi, P. (2000). Shifts in the psychometric function and their implications for models of timing. Journal of The Experimental Analysis of Behavior, 74, 25–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matell, M.S., & Meck, W.H (1999). Reinforcement-induced within-trial resetting of an internal clock. Behavioural Processes, 45, 159–171.

    Article  CAS  PubMed  Google Scholar 

  • Matell, M.S., Meck, W.H., Nicolelis, M.A.L. (2003). Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons. Behavioral Neuroscience, 117, 760–773.

    Article  PubMed  Google Scholar 

  • Mazur, J.E. (2006). Learning and Behavior, 6th ed. NJ: Prentice Hall.

    Google Scholar 

  • Meck, W.H. (1996). Neuropharmacology of timing and time perception. Cognitive Brain Research, 3, 227–242.

    Article  CAS  PubMed  Google Scholar 

  • Meck, W.H. (2006). Neuroanatomical localization of an internal clock: a functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Research, 1109, 93–107.

    Article  CAS  PubMed  Google Scholar 

  • Oprisan, S.A., & Buhusi, C.V. (2011). Modeling pharmacological clock and memory patterns of interval timing in a striatal beat-frequency model with realistic, noisy neurons. Frontiers in Integrative Neuroscience, 5, 52.

    Article  PubMed Central  PubMed  Google Scholar 

  • Oprisan, S.A., & Buhusi, C.V (2013). Why noise is useful in functional and neural mechanisms of interval timing?. BMC Neuroscience, 14, 84.

    Article  PubMed Central  PubMed  Google Scholar 

  • Roberts, S. (1981). Isolation of an internal clock. Journal of Experimental Psychology: Animal Behavior Processes, 7, 242–268.

    CAS  PubMed  Google Scholar 

  • Saigusa, T., Tero, A., Nakagaki, T., Kuramoto, Y. (2008). Amoebae anticipate periodic events. Physical Review Letters, 100(1), 018101.

    Article  PubMed  Google Scholar 

  • Spence, K.W. (1937). The differential response in animals to stimuli varying within a single dimension. Psychological Review, 44, 430–444.

    Article  Google Scholar 

  • Staddon, J.E.R., & Higa, J.J. (1999). Time and memory: Towards a pacemaker-free theory of interval timing. Journal of The Experimental Analysis of Behavior, 71, 215–251.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vlastos, G. (1967). Zeno of Elea. In: The Encyclopedia of Philosophy, 8. Macmillan, New York, (pp. 369–379).

  • Yi, L. (2007). Applications of timing theories to a peak procedure. Behavioural Processes, 75, 188–198.

    Article  PubMed  Google Scholar 

  • Zentall, T. (2006). Timing, memory for intervals, and memory for untimed stimuli: The role of instructional ambiguity. Behavioural Processes, 71, 88–97.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Hiromi Ohtake, Ryo Kobayashi, and Hiroshi Tango for their comments regarding the mathematics, Ken’ichiro Shimatani for his comments regarding the statistics, Simon Fraser and Anne Macaskill for their comments regarding written English, and Asako Ujita for her assistance with the experiment. The authors also thank Takayuki Sakagami and Peter Killeen for their valuable advice about behavioural sciences.

Conflict of interests

The authors declare that they have no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Hasegawa.

Additional information

Action Editor: Mark van Rossum

Appendix

Appendix

The mean value of the correlation coefficients

For each correlation coefficient r, after normalization by Fisher’s z′ transformation (r-to- z′ transformation) \(z^{\prime } = \frac {\,1\,}{\,2\,}\ln \frac {\,1 + r\,}{\,1 - r\,}\), we calculated the arithmetic mean \(\overline {z^{\prime }}\) of z′. Then we converted back to get the mean \(\overline {r}\) shown in all panels in Figs. 10 and 14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasegawa, T., Sakata, S. A model of multisecond timing behaviour under peak-interval procedures. J Comput Neurosci 38, 301–313 (2015). https://doi.org/10.1007/s10827-014-0542-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-014-0542-4

Keywords

Navigation