Inhibition facilitates direction selectivity in a noisy cortical environment | Journal of Computational Neuroscience Skip to main content
Log in

Inhibition facilitates direction selectivity in a noisy cortical environment

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

In a broad class of models, direction selectivity in primary visual cortical neurons arises from the linear summation of spatially offset and temporally lagged inputs combined with a spike threshold. Here, we characterize the robustness of this class of models to input noise and background activity that is uncorrelated with the visual stimulus. When only excitatory inputs were considered, moderate levels of noise substantially degraded direction selectivity. By contrast, the inclusion of inhibition produced a direction-selective neuron even at high noise levels. Moreover, if inhibitory inputs were tuned, mirroring excitatory inputs but lagging by a fixed delay, they promoted a highly direction-selective response by suppressing all excitatory inputs in the null direction while minimally affecting excitatory inputs in the preferred direction. Additionally, tuned inhibition strongly reduced trial-by-trial variability, such that the neuron produced a consistent direction-selective response to multiple presentation of the same stimulus. This work illustrates how inhibition could be used by cortical circuits to reliably extract information on a single-trial basis from feed-forward inputs in a noisy, high-background context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adelson, E.H., & Bergen, J.R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A, 2(2), 284–299.

    Article  CAS  Google Scholar 

  • Anderson, J., Carandini, M., Ferster, D. (2000). Orientation Tuning of Input Conductance, Excitation, and Inhibition in Cat Primary Visual Cortex. Journal of Neurophysiology, 84(2), 909– 926.

    CAS  PubMed  Google Scholar 

  • Baker, C. (1988). Spatial and temporal determinants of directionally selective velocity preference in cat striate cortex neurons. Journal of Neurophysiology, 59(5), 1557–1574.

    PubMed  Google Scholar 

  • Cai, D., DeAngelis, G., Gregory, C., Freeman, R. (1997). Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. Journal of Neurophysiology, 78(2), 1045– 1061.

    CAS  PubMed  Google Scholar 

  • Carandini, M., & Ferster, D. (2000). Membrane potential and firing rate in cat primary visual cortex. Journal of Neuroscience, 20(1), 470–484.

    CAS  PubMed  Google Scholar 

  • Cardin, J.A., Palmer, L.A., Contreras, D. (2007). Stimulus Feature Selectivity in Excitatory and Inhibitory Neurons in Primary Visual Cortex. Journal of Neuroscience, 27(39), 10333–10344.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen, B., Boukamel, K., Kao, J., Roerig, B. (2005). Spatial distribution of inhibitory synaptic connections during development of ferret primary visual cortex. Experimental Brain Research, 160(4), 496–509.

    Article  PubMed  Google Scholar 

  • Dayan, P., & Abbott, L. (2001). Theoretical neurosciencep: Computational and mathematical modeling of neural systems: The MIT Press.

  • DeAngelis, G., Ohzawa, I., Freeman, R. (1993). Spatiotemporal organization of simple-cell receptive fields in the cat’s striate cortex. I. General characteristics and postnatal development. Journal of Neurophysiology, 69(4), 1091.

    CAS  PubMed  Google Scholar 

  • DeAngelis, G., Ohzawa, I., Freeman, R. (1993). Spatiotemporal organization of simple-cell receptive fields in the cat’s striate cortex. II. Linearity of temporal and spatial summation. Journal of Neurophysiology, 69(4), 1118.

    CAS  PubMed  Google Scholar 

  • Ferster, D. (1988). Spatially opponent excitation and inhibition in simple cells of the cat visual cortex. The Journal of Neuroscience, 8(4), 1172–1180.

    CAS  PubMed  Google Scholar 

  • Ferster, D., & Miller, K.D. (2000). Neural mechanisms of orientation selectivity in the visual cortex. Annual Review of Neuroscience, 23, 441–471.

    Article  CAS  PubMed  Google Scholar 

  • Fourcaud-Trocme, N., Hansel, D., van Vreeswijk, C., Brunel, N. (2003). How spike generation mechanisms determine the neuronal response to fluctuating inputs. Journal of Neuroscience, 23(37), 11628–11640.

    CAS  PubMed  Google Scholar 

  • Hansel, D., & van Vreeswijk, C. (2002). How noise contributes to contrast invariance of orientation tuning in cat visual cortex. Journal of Neuroscience, 22(12), 5118–5128.

    CAS  PubMed  Google Scholar 

  • Honeycutt, R. (1992). Stochastic Runge-Kutta Algorithms. I. White noise. Physical Review A, 45, 600–603.

    Article  CAS  PubMed  Google Scholar 

  • Isaacson, J.S., & Scanziani, M. (2011). How inhibition shapes cortical activity. Neuron, 72(2), 231–243.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jagadeesh, B., Wheat, H., Ferster, D. (1993). Linearity of summation of synaptic potentials underlying direction selectivity in simple cells of the cat visual cortex. Science, 262(5141), 1901–1904.

    Article  CAS  PubMed  Google Scholar 

  • Kayser, A., & Miller, K. (2002). Opponent inhibition: a developmental model of layer 4 of the neocortical circuit. Neuron, 33, 131– 142.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Van Hooser, S., Mazurek, M., White, L., Fitzpatrick, D. (2008). Experience with moving visual stimuli drives the early development of cortical direction selectivity. Nature, 456(7224), 952–956.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Livingstone, M.S. (1998). Mechanisms of direction selectivity in macaque V1. Neuron, 20(3), 509–526.

    Article  CAS  PubMed  Google Scholar 

  • Monier, C., Chavane, F., Baudot, P., Graham, L.J., Frégnac, Y. (2003). Orientation and direction selectivity of synaptic inputs in visual cortical neurons: a diversity of combinations produces spike tuning. Neuron, 37(4), 663–680.

    Article  CAS  PubMed  Google Scholar 

  • Moore, B., Alitto, H., Usrey, W. (2005). Orientation tuning, but not direction selectivity, is invariant to temporal frequency in primary visual cortex. Journal of Neurophysiology, 94(2), 1336–1345.

    Article  PubMed  Google Scholar 

  • Palmer, S.E., & Miller, K.D. (2007). Effects of inhibitory gain and conductance fluctuations in a simple model for contrast-invariant orientation tuning in cat V1. Journal of Neurophysiology, 98(1), 63–78.

    Article  PubMed  Google Scholar 

  • Peterson, M., Li, B., Freeman, R. (2004). The derivation of direction selectivity in the striate cortex. The Journal of Neuroscience, 24(14), 3583–3591.

    Article  CAS  PubMed  Google Scholar 

  • Peterson, M., Li, B., Freeman, R. (2006). Direction selectivity of neurons in the striate cortex increases as stimulus contrast is decreased. Journal of Neurophysiology, 95, 2705–2712.

    Article  PubMed  Google Scholar 

  • Priebe, N., & Ferster, D. (2005). Direction selectivity of excitation and inhibition in simple cells of the cat primary visual cortex. Neuron, 45(1), 133–145.

    Article  CAS  PubMed  Google Scholar 

  • Priebe, N., Lisberger, S., Movshon, J. (2006). Tuning for spatiotemporal frequency and speed in directionally selective neurons of macaque striate cortex. The Journal of Neuroscience, 26(11), 2941–2950.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Priebe, N., & Ferster, D. (2008). Inhibition, spike threshold, and stimulus selectivity in primary visual cortex. Neuron, 57(4), 482–497.

    Article  CAS  PubMed  Google Scholar 

  • Reid, R., Soodak, R., Shapley, R. (1987). Linear mechanisms of directional selectivity in simple cells of cat striate cortex. Proceedings of the National Academy of Sciences, 84, 8740–8744.

    Article  CAS  Google Scholar 

  • Reid, R., Soodak, R., Shapley, R. (1991). Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex. Journal of Neurophysiology, 66(2), 505.

    CAS  PubMed  Google Scholar 

  • Roerig, B., & Chen, B. (2003). Different inhibitory synaptic input patterns in excitatory and inhibitory layer 4 neurons of ferret visual cortex. Cerebral Cortex, 13, 350–363.

    Article  PubMed  Google Scholar 

  • Saul, A., & Humphrey, A. (1990). Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. Journal of Neurophysiology, 64(1), 206.

    CAS  PubMed  Google Scholar 

  • Saul, A., & Humphrey, A. (1992). Temporal-frequency tuning of direction selectivity in cat visual cortex. Visual Neuroscience, 8(4), 365–372.

    Article  CAS  PubMed  Google Scholar 

  • Scholl, B., Tan, A.Y.Y., Corey, J., Priebe, N.J. (2013). Emergence of Orientation Selectivity in the Mammalian Visual Pathway. Journal of Neuroscience, 33(26), 10616–10624.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Stephanie E. Palmer for helpful comments on the manuscript. This work is supported by NIH training grant 5T32HG003284, NIH grant P50 GM071508 (PI David Botstein) and Bernstein Focus: Neurotechnology Frankfurt, BFNT 01GQ0840.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audrey Sederberg.

Additional information

Action Editor: Ken Miller

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sederberg, A., Kaschube, M. Inhibition facilitates direction selectivity in a noisy cortical environment. J Comput Neurosci 38, 235–248 (2015). https://doi.org/10.1007/s10827-014-0538-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-014-0538-0

Keywords

Navigation