The role of linear and voltage-dependent ionic currents in the generation of slow wave oscillations | Journal of Computational Neuroscience
Skip to main content

The role of linear and voltage-dependent ionic currents in the generation of slow wave oscillations

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Neuronal oscillatory activity is generated by a combination of ionic currents, including at least one inward regenerative current that brings the cell towards depolarized voltages and one outward current that repolarizes the cell. Such currents have traditionally been assumed to require voltage-dependence. Here we test the hypothesis that the voltage dependence of the regenerative inward current is not necessary for generating oscillations. Instead, a current I NL that is linear in the biological voltage range and has negative conductance is sufficient to produce regenerative activity. The current I NL can be considered a linear approximation to the negative-conductance region of the current–voltage relationship of a regenerative inward current. Using a simple conductance-based model, we show that I NL , in conjunction with a voltage-gated, non-inactivating outward current, can generate oscillatory activity. We use phase-plane and bifurcation analyses to uncover a rich variety of behaviors as the conductance of I NL is varied, and show that oscillations emerge as a result of destabilization of the resting state of the model neuron. The model shows the need for well-defined relationships between the inward and outward current conductances, as well as their reversal potentials, in order to produce stable oscillatory activity. Our analysis predicts that a hyperpolarization-activated inward current can play a role in stabilizing oscillatory activity by preventing swings to very negative voltages, which is consistent with what is recorded in biological neurons in general. We confirm this prediction of the model experimentally in neurons from the crab stomatogastric ganglion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ball, J. M., Franklin, C. C., Tobin, A. E., Schulz, D. J., & Nair, S. S. (2010). Coregulation of ion channel conductances preserves output in a computational model of a crustacean cardiac motor neuron. Journal of Neuroscience, 30(25), 8637–8649.

    Article  CAS  PubMed  Google Scholar 

  • Bazhenov, M., Timofeev, I., Steriade, M., & Sejnowski, T. J. (2002). Model of thalamocortical slow-wave sleep oscillations and transitions to activated States. Journal of Neuroscience, 22(19), 8691–8704.

    CAS  PubMed  Google Scholar 

  • Blethyn, K. L., Hughes, S. W., Toth, T. I., Cope, D. W., & Crunelli, V. (2006). Neuronal basis of the slow (<1 Hz) oscillation in neurons of the nucleus reticularis thalami in vitro. Journal of Neuroscience, 26(9), 2474–2486.

    Article  CAS  PubMed  Google Scholar 

  • Brickley, S. G., Aller, M. I., Sandu, C., Veale, E. L., Alder, F. G., Sambi, H., et al. (2007). TASK-3 two-pore domain potassium channels enable sustained high-frequency firing in cerebellar granule neurons. Journal of Neuroscience, 27(35), 9329–9340.

    Article  CAS  PubMed  Google Scholar 

  • Cantrell, A. R., & Catterall, W. A. (2001). Neuromodulation of Na + channels: an unexpected form of cellular plasticity. Nature Reviews Neuroscience, 2(6), 397–407.

    Article  CAS  PubMed  Google Scholar 

  • Cymbalyuk, G. S., Gaudry, Q., Masino, M. A., & Calabrese, R. L. (2002). Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms. Journal of Neuroscience, 22(24), 10580–10592.

    CAS  PubMed  Google Scholar 

  • Del Negro, C. A., Koshiya, N., Butera, R. J., Jr., & Smith, J. C. (2002). Persistent sodium current, membrane properties and bursting behavior of pre-botzinger complex inspiratory neurons in vitro. Journal of Neurophysiology, 88(5), 2242–2250.

    Article  PubMed  Google Scholar 

  • Desai, N. S., Rutherford, L. C., & Turrigiano, G. G. (1999). Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nature Neuroscience, 2(6), 515–520.

    Article  CAS  PubMed  Google Scholar 

  • DiFrancesco, D. (2005). Cardiac pacemaker I(f) current and its inhibition by heart rate-reducing agents. Current Medical Research and Opinion, 21(7), 1115–1122.

    Article  CAS  PubMed  Google Scholar 

  • Dunmyre, J. R., Del Negro, C. A., & Rubin, J. E. (2011). Interactions of persistent sodium and calcium-activated nonspecific cationic currents yield dynamically distinct bursting regimes in a model of respiratory neurons. Journal of Computational Neuroscience, 31(2), 305–328.

    Article  PubMed Central  PubMed  Google Scholar 

  • Goldman, M. S., Golowasch, J., Marder, E., & Abbott, L. F. (2001). Global structure, robustness, and modulation of neuronal models. Journal of Neuroscience, 21(14), 5229–5238.

    CAS  PubMed  Google Scholar 

  • Golowasch, J., & Marder, E. (1992a). Ionic currents of the lateral pyloric neuron of the stomatogastric ganglion of the crab. Journal of Neurophysiology, 67(2), 318–331.

    CAS  PubMed  Google Scholar 

  • Golowasch, J., & Marder, E. (1992b). Proctolin activates an inward current whose voltage dependence is modified by extracellular Ca2+. Journal of Neuroscience, 12(3), 810–817.

    CAS  PubMed  Google Scholar 

  • Haedo, R. J., & Golowasch, J. (2006). Ionic mechanism underlying recovery of rhythmic activity in adult isolated neurons. Journal of Neurophysiology, 96(4), 1860–1876.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hodgkin, A. L., Huxley, A. F., & Katz, B. (1952). Measurement of current–voltage relations in the membrane of the giant axon of Loligo. The Journal of Physiology, 116(4), 424–448.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hooper, S. L., & Marder, E. (1987). Modulation of the lobster pyloric rhythm by the peptide proctolin. Journal of Neuroscience, 7(7), 2097–2112.

    CAS  PubMed  Google Scholar 

  • Jahnsen, H., & Llinas, R. (1984). Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. The Journal of Physiology, 349, 227–247.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khorkova, O., & Golowasch, J. (2007). Neuromodulators, not activity, control coordinated expression of ionic currents. Journal of Neuroscience, 27(32), 8709–8718.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koizumi, H., & Smith, J. C. (2008). Persistent Na+ and K+ −dominated leak currents contribute to respiratory rhythm generation in the pre-Botzinger complex in vitro. Journal of Neuroscience, 28(7), 1773–1785.

    Article  CAS  PubMed  Google Scholar 

  • Kramer, R. H., & Zucker, R. S. (1985). Calcium-dependent inward current in Aplysia bursting pace-maker neurones. The Journal of Physiology, 362, 107–130.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuznetsov, I. U. A. (2004). Elements of applied bifurcation theory (3rd ed., Applied mathematical sciences, Vol. 112). New York: Springer.

  • Li, J., & Baccei, M. L. (2011). Pacemaker neurons within newborn spinal pain circuits. Journal of Neuroscience, 31(24), 9010–9022.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu, T. Z., & Feng, Z. P. (2012). NALCN: a regulator of pacemaker activity. Molecular Neurobiology, 45(3), 415–423.

    Article  CAS  PubMed  Google Scholar 

  • McCormick, D. A., & Bal, T. (1997). Sleep and arousal: thalamocortical mechanisms. Annual Review of Neuroscience, 20, 185–215.

    Article  CAS  PubMed  Google Scholar 

  • McCormick, D. A., & Huguenard, J. R. (1992). A model of the electrophysiological properties of thalamocortical relay neurons. Journal of Neurophysiology, 68(4), 1384–1400.

    CAS  PubMed  Google Scholar 

  • Pang, D. S., Robledo, C. J., Carr, D. R., Gent, T. C., Vyssotski, A. L., Caley, A., et al. (2009). An unexpected role for TASK-3 potassium channels in network oscillations with implications for sleep mechanisms and anesthetic action. Proceedings of the National Academy of Sciences of the United States of America, 106(41), 17546–17551.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prinz, A. A., Bucher, D., & Marder, E. (2004). Similar network activity from disparate circuit parameters. Nature Neuroscience, 7(12), 1345–1352.

    Article  CAS  PubMed  Google Scholar 

  • Rekling, J. C., Funk, G. D., Bayliss, D. A., Dong, X. W., & Feldman, J. L. (2000). Synaptic control of motoneuronal excitability. Physiological Reviews, 80(2), 767–852.

    CAS  PubMed  Google Scholar 

  • Robinson, R. B., & Siegelbaum, S. A. (2003). Hyperpolarization-activaterd cation currents: from molecules to physiological function. Annual Review of Physiology, 65, 453–480.

    Article  CAS  PubMed  Google Scholar 

  • Selverston, A. I., Russell, D. F., & Miller, J. P. (1976). The stomatogastric nervous system: structure and function of a small neural network. Progress in Neurobiology, 7(3), 215–290.

    Article  CAS  PubMed  Google Scholar 

  • Sharp, A. A., O’Neil, M. B., Abbott, L. F., & Marder, E. (1993). Dynamic clamp: computer-generated conductances in real neurons. Journal of Neurophysiology, 69(3), 992–995.

    CAS  PubMed  Google Scholar 

  • Swensen, A. M., & Bean, B. P. (2005). Robustness of burst firing in dissociated purkinje neurons with acute or long-term reductions in sodium conductance. Journal of Neuroscience, 25(14), 3509–3520.

    Article  CAS  PubMed  Google Scholar 

  • Swensen, A. M., & Marder, E. (2000). Multiple peptides converge to activate the same voltage-dependent current in a central pattern-generating circuit. Journal of Neuroscience, 20(18), 6752–6759.

    CAS  PubMed  Google Scholar 

  • Tobin, A. E., Van Hooser, S. D., & Calabrese, R. L. (2006). Creation and reduction of a morphologically detailed model of a leech heart interneuron. Journal of Neurophysiology, 96(4), 2107–2120.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tryba, A. K., Pena, F., & Ramirez, J. M. (2006). Gasping activity in vitro: a rhythm dependent on 5-HT2A receptors. Journal of Neuroscience, 26(10), 2623–2634.

    Article  CAS  PubMed  Google Scholar 

  • Turrigiano, G., Abbott, L. F., & Marder, E. (1994). Activity-dependent changes in the intrinsic properties of cultured neurons. Science, 264(5161), 974–977.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, S., Golowasch, J., & Nadim, F. (2010). Pacemaker neuron and network oscillations depend on a neuromodulator-regulated linear current. Frontiers in Behavioral Neuroscience, 4, 21.

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF DMS1122291 (AB), NIH MH064711 (JG) and NIH MH060605 (FN).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Golowasch.

Additional information

Action Editor: Mark Goldman

Appendix

Appendix

We used the following set of equations for simulations associated with Figs. 4, 5, 6, 7, and 8.

$$ \begin{array}{l}v^{\prime }=\left[{I}_{ext}-{I}_{NL}^{*}(v)-{I}_K\left(v,w\right)-{I}_h\left(v,h\right)\right]/{C}_m\hfill \\ {}w^{\prime }=\frac{w_{\infty }(v)-w}{\tau_K(v)}\hfill \\ {}h^{\prime }=\frac{h_{\infty }(v)-h}{\tau_h(v)}\hfill \end{array} $$

where

$$ \begin{array}{l}{I}_K\left(v,w\right)={g}_Kw\left[v-{E}_K\right]\hfill \\ {}{I}_{NL}^{*}=\left\{\begin{array}{l}{g}_{NL}\left[v-{E}_{NL}\right] Heav\left(v-{E}_{NL}\right),\mathrm{for}\ \mathrm{Fig}\mathrm{s}.4,5,6,7\ \mathrm{and}\ 8\\ {}{g}_{NL}\left[v-{E}_{NL}\right],\mathrm{for}\ \mathrm{Fig}.8\end{array}\right.\hfill \\ {}{I}_h={g}_hh\left[v-{E}_h\right]\hfill \end{array} $$

The gating functions are

$$ \begin{array}{l}{w}_{\infty }(v)=1/\left[1+ \exp \left(-\left[v-{w}_{mid}\right]/{k}_1\right)\right]\hfill \\ {}{h}_{\infty }(v)=1/\left[1+ \exp \left(\left[v-{h}_{mid}\right]/{h}_1\right)\right]\hfill \end{array} $$

and the time constants are given by τ K (v) = τ 1/[1 + exp(v/k s )] and τ h (v) = τ h1 ms. The following parameter values were used in all simulations E K  = − 80 mV, g K  = 0.5, I ext  = 0, and C m  = 1.0 nF

In Figs. 4 and 5 there was no h current, which we modeled simply by setting g h  = 0 μS. We let E NL  = − 79 mV, w mid  = − 60 mV, k s  = 2 mV. For Fig. 4, we used k 1 = 2 mV and τ 1 = 60 ms. For Fig. 5a, we used k 1 = 4 mV and τ 1 = 80 ms. For Fig. 5b, we used k 1 = 4 mV and τ 1 = 60 ms.

In Fig. 6, an instantaneous version of the h current was used, i.e., the equation for h ′ was replaced with h ≡ h (v). For this figure, parameter values from Fig. 5a were used. In addition, E h  = − 30 mV, h mid  = − 85 mV, h 1 = 2 mV, E NL  = −75 mV and g NL  = − 0.15 μS. Figure 6b was obtained by varying h mid while g h  = 1 μS was fixed.

In Fig. 7, we used parameter values from Fig. 5a with g NL  = − 0.45 μS, E NL  = −75 mV, g h  = 1. The perturbation was achieved be setting I ext  = −1 for 50 mS.

In Fig. 8, we used C m  = 10.0 nF, τ h1 = 200 ms, τ 1 = 600 ms to match the biological timescale. Additionally, we set τ K (v) = τ 1/cosh((v − w mid ))/k s ) with k s  = 5.6 mV, g NL  = − 0.45 μS, E NL  = − 65 mV, w mid  = − 40 mV, g h  = 0.8 μS and h 1 = 6 mV.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bose, A., Golowasch, J., Guan, Y. et al. The role of linear and voltage-dependent ionic currents in the generation of slow wave oscillations. J Comput Neurosci 37, 229–242 (2014). https://doi.org/10.1007/s10827-014-0498-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-014-0498-4

Keywords