Mechanism of conduction block in amphibian myelinated axon induced by biphasic electrical current at ultra-high frequency | Journal of Computational Neuroscience Skip to main content
Log in

Mechanism of conduction block in amphibian myelinated axon induced by biphasic electrical current at ultra-high frequency

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The mechanism of axonal conduction block induced by ultra-high frequency (≥20 kHz) biphasic electrical current was investigated using a lumped circuit model of the amphibian myelinated axon based on Frankenhaeuser-Huxley (FH) equations. The ultra-high frequency stimulation produces constant activation of both sodium and potassium channels at the axonal node under the block electrode causing the axonal conduction block. This blocking mechanism is different from the mechanism when the stimulation frequency is between 4 kHz and 10 kHz, where only the potassium channel is constantly activated. The minimal stimulation intensity required to induce a conduction block increases as the stimulation frequency increases. The results from this simulation study are useful to guide future animal experiments to reveal the different mechanisms underlying nerve conduction block induced by high-frequency biphasic electrical current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agnew, W. F., & McCreery, D. H. (1990). Neural prostheses: Fundamental studies. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Bhadra, N., & Kilgore, K. (2005). High-frequency electrical conduction block of mammalian peripheral motor nerve. Muscle Nerve, 32, 782–790.

    Article  PubMed  Google Scholar 

  • Bhadra, N., Lahowetz, E., Foldes, S., & Kilgore, K. (2007). Simulation of high-frequency sinusoidal electrical block of mammalian myelinated axons. Journal of Computational Neuroscience, 22, 313–326.

    Article  PubMed  Google Scholar 

  • Bikson, M., Lian, J., Hahn, P., Stacey, W., Sciortino, C., & Durand, D. (2001). Suppression of epileptiform activity by high frequency sinusoidal fields in rat hippocampal slices. Journal of Physiology, 531, 181–191.

    Article  PubMed  CAS  Google Scholar 

  • Bowman, B., & McNeal, D. (1986). Response of single alpha motoneurons to high frequency pulse train: firing behavior and conduction block phenomenon. Applied Neurophysiology, 49, 121–138.

    PubMed  CAS  Google Scholar 

  • Boyce, W. E., & Diprima, R. C. (1997). Elementary differential equations and boundary value problems. John Wiley & Sons, Inc., 6th ed., pp. 436–457.

  • Bromm, B. (1975). Spike frequency of the nodal membrane generated by high-frequency alternating current. Pfluger Archive, 353, 1–19.

    Article  CAS  Google Scholar 

  • Chiu, S. Y., Ritchie, J. M., Rogart, R. B., & Stagg, D. (1979). A quantitative description of membrane currents in rabbit myelinated nerve. Journal of Physiology (London), 292, 149–166.

    CAS  Google Scholar 

  • Frankenhaeuser, B., & Huxley, A. F. (1964). The action potential in the myelinated nerve fibre of Xenopus Laevis as computed on the basis of voltage clamp data. Journal of Physiology (London), 171, 302–315.

    CAS  Google Scholar 

  • Gerges, M., Foldes, E. L., Ackermann, D. M., Bhadra, N., Bhadra, N., & Kilgore, K. L. (2010). Frequency- and amplitude-transitioned waveforms mitigate the onset response in high-frequency nerve block. Journal of Neural Engineering, 7.

  • Graunt, R. A., & Prochazka, A. (2009). Transcutaneously coupled, high-frequency electrical stimulation of the pudendal nerve blocks external urethral sphincter contractions. Neurorehabilitation and Neural Repair, 23, 615–626.

    Article  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology (London), 117, 500–544.

    CAS  Google Scholar 

  • Jensen, A., & Durand, D. (2007). Suppression of axonal conduction by sinusoidal stimulation in rat hippocampus in vitro. Journal of Neural Engineering, 4, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Joseph, L., & Butera, R. (2009). Unmyelinated aplysia nerves exhibit a nonmonotonic blocking response to high-frequency stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17, 537–544.

    Article  PubMed  Google Scholar 

  • Leob, G. E. (1989). Neural prosthetic interfaces with the nervous system. Trends in Neurosciences, 12, 195–201.

    Article  Google Scholar 

  • Lian, J., Bikson, M., Sciortino, C., Stacey, W., & Durand, D. (2003). Local suppression of epileptiform activity by electrical stimulation in rat hippocampus in vitro. Journal of Physiology, 547, 427–434.

    Article  PubMed  CAS  Google Scholar 

  • Liu, H., Roppolo, J. R., de Groat, W. C., & Tai, C. (2009). The role of slow potassium current in nerve conduction block induced by high-frequency biphasic electrical current. IEEE Transactions on Biomedical Engineering, 56, 137–146.

    Article  PubMed  Google Scholar 

  • Nashold, B. S., Goldner, J. L., Mullen, J. B., & Bright, D. S. (1982). Long-term pain control by direct peripheral-nerve stimulation. Journal of Bone and Joint Surgery, 64A, 1–10.

    Google Scholar 

  • Rattay, F., & Aberham, M. (1993). Modeling axon membranes for functional electrical stimulation. IEEE Transactions on Biomedical Engineering, 40, 1201–1209.

    Article  PubMed  CAS  Google Scholar 

  • Reboul, J., & Rosenblueth, A. (1939). The action of alternating currents upon the electrical excitability of nerve. American Journal of Physiology, 125, 205–215.

    Google Scholar 

  • Rosenblueth, A., & Reboul, J. (1939). The blocking and deblocking effects of alternating currents on nerve. American Journal of Physiology, 125, 251–264.

    Google Scholar 

  • Roth, B. J. (1994). Mechanisms for electrical stimulation of excitable tissue. Critical Review on Biomedical Engineering, 22, 253–305.

    CAS  Google Scholar 

  • Schwarz, J. R., & Eikhof, G. (1987). Na currents and action potentials in rat myelinated nerve fibres at 20 and 37°C. Pflugers Archive., 409, 569–577.

    Article  CAS  Google Scholar 

  • Schwarz, J. R., Reid, G., & Bostock, H. (1995). Action potentials and membrane currents in the human node of Ranvier. Pflugers Archive, 430, 283–292.

    Article  CAS  Google Scholar 

  • Tai, C., Roppolo, J. R., & de Groat, W. C. (2004). Block of external urethral sphincter contraction by high frequency electrical stimulation of pudendal nerve. Journal of Urology, 172, 2069–2072.

    Article  PubMed  Google Scholar 

  • Tai, C., de Groat, W. C., & Roppolo, J. R. (2005a). Simulation analysis of conduction block in unmyelinated axons induced by high-frequency biphasic electrical currents. IEEE Transactions on Biomedical Engineering, 52, 1323–1332.

    Article  PubMed  Google Scholar 

  • Tai, C., de Groat, W. C., & Roppolo, J. R. (2005b). Simulation of nerve block by high-frequency sinusoidal electrical current based on the Hodgkin-Huxley model. IEEE Transactions on Neural System and Rehabilitation Engineering, 13, 415–422.

    Article  Google Scholar 

  • Tai, C., Roppolo, J. R., & de Groat, W. C. (2005c). Response of external urethral sphincter to high frequency biphasic electrical stimulation of pudendal nerve. Journal of Urology, 174, 782–786.

    Article  PubMed  Google Scholar 

  • Tai, C., Wang, J., Chancellor, M. B., Roppolo, J. R., & de Groat, W. C. (2008). Influence of temperature on pudendal nerve block induced by high frequency biphasic electrical current. Journal of Urology, 180, 1173–1178.

    Article  PubMed  Google Scholar 

  • Tanner, T. (1962). Reversible blocking of nerve conduction by alternating-current excitation. Nature, 195, 712–713.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., Shen, B., Roppolo, J. R., de Groat, W. C., & Tai, C. (2008). Influence of frequency and temperature on the mechanisms of nerve conduction block induced by high-frequency biphasic electrical current. Journal of Computational Neuroscience, 24, 195–206.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, R., & Andrews, B. (2005). Localized electrical nerve blocking. IEEE Transactions on Biomedical Engineering, 52, 362–370.

    Article  PubMed  Google Scholar 

  • Zhang, X., Roppolo, J. R., de Groat, W. C., & Tai, C. (2006a). Simulation analysis of conduction block in myelinated axons induced by high-frequency biphasic rectangular pulses. IEEE Transactions on Biomedical Engineering, 53, 1433–1436.

    Article  PubMed  Google Scholar 

  • Zhang, X., Roppolo, J. R., de Groat, W. C., & Tai, C. (2006b). Mechanism of nerve conduction block induced by high-frequency biphasic electrical currents. IEEE Transactions on Biomedical Engineering, 53, 2445–2454.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work is supported by the NIH under grants DK-068566, DK-090006, DK-077783, and by Christopher and Dana Reeve Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changfeng Tai.

Additional information

Action Editor: Gaute T Einevoll

Appendix

Appendix

The ionic current I i,j at jth node is described as:

$$ \begin{array}{*{20}{c}} {{I_{{i,j}}} = {i_{{Na}}} + {i_K} + {i_P} + {i_L}} \\ {{i_{{Na}}} = {P_{{Na}}}{m^2}h\frac{{E{F^2}}}{{RT}}\frac{{{{[Na]}_0} - {{[Na]}_i}{e^{{EF/RT}}}}}{{1 - {e^{{EF/RT}}}}}} \\ {{i_K} = {P_K}{n^2}\frac{{E{F^2}}}{{RT}}\frac{{{{[K]}_0} - {{[K]}_i}{e^{{EF/RT}}}}}{{1 - {e^{{EF/RT}}}}}} \\ {{i_P} = {P_P}{p^2}\frac{{E{F^2}}}{{RT}}\frac{{{{[Na]}_0} - {{[Na]}_i}{e^{{EF/RT}}}}}{{1 - {e^{{EF/RT}}}}}} \\ {{i_L} = {g_L}\left( {{V_j} - {V_L}} \right)} \\ {E = {V_j} + {V_{{rest}}}} \\ \end{array} $$

where P Na (0.008 cm/s), P K (0.0012 cm/s) and P P (0.00054 cm/s) are the ionic permeabilities for sodium, potassium and nonspecific currents respectively; \( {g_L} \) (30.3 kΩ−1 cm−2) is the maximum conductance for leakage current. VL (0.026 mV) is reduced equilibrium membrane potential for leakage ions, in which the resting membrane potential \( {V_{{rest}}} \) (−70 mV) has been subtracted. [Na]i (13.7 mmole/l) and [Na]o (114.5 mmole/l) are sodium concentrations inside and outside the axon membrane. [K]i (120 mmole/l) and [K]o (2.5 mmole/l) are potassium concentrations inside and outside the axon membrane. F (96,485 c/mole) is Faraday constant. R (8314.4 mJ/K/mole) is gas constant. m, h, n and p are dimensionless variables, whose values always change between 0 and 1. m and h represent activation and inactivation of sodium channels, whereas n represents activation of potassium channels. p represents activation of non-specific ion channels. The evolution equations for m, h, n and p are the following:

$$ \begin{array}{*{20}{c}} {dm/dt = [{\alpha_m}(1 - m) - {\beta_m}m]{k_m}} \\ {dh/dt = [{\alpha_h}(1 - h) - {\beta_h}h]k} \\ {dn/dt = [{\alpha_n}(1 - n) - {\beta_n}n]k} \\ {dp/dt = [{\alpha_p}(1 - p) - {\beta_p}p]{k}} \\ \end{array} $$

and

$$ \begin{array}{*{20}{c}} {{\alpha_m} = \frac{{0.36({V_j} - 22)}}{{1 - \exp (\frac{{22 - {V_j}}}{3})}}} \\ {{\beta_m} = \frac{{0.4(13 - {V_j})}}{{1 - \exp (\frac{{{V_j} - 13}}{{20}})}}} \\ {{\alpha_h} = - \frac{{0.1({V_j} + 10)}}{{1 - \exp (\frac{{{V_j} + 10}}{6})}}} \\ {{\beta_h} = \frac{{4.5}}{{1 + \exp (\frac{{45 - {V_j}}}{{10}})}}} \\ {{\alpha_n} = \frac{{0.02({V_j} - 35)}}{{1 - \exp (\frac{{35 - {V_j}}}{{10}})}}} \\ {{\beta_n} = \frac{{0.05(10 - {V_j})}}{{1 - \exp (\frac{{{V_j} - 10}}{{10}})}}} \\ {{\alpha_p} = \frac{{0.006({V_j} - 40)}}{{1 - \exp (\frac{{40 - {V_j}}}{{10}})}}} \\ {{\beta_p} = - \frac{{0.09({V_j} + 25)}}{{1 - \exp (\frac{{{V_j} + 25}}{{20}})}}} \\ {{k_m} = {{1.8}^{{(T - 293)/10}}}} \\ {k = {3^{{(T - 293)/10}}}} \\ \end{array} $$

where T is the temperature in °Kelvin. The initial values for m, h, n and p (when Vj = 0 mV) are 0.0005, 0.0268, 0.8249 and 0.0049 respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tai, C., Guo, D., Wang, J. et al. Mechanism of conduction block in amphibian myelinated axon induced by biphasic electrical current at ultra-high frequency. J Comput Neurosci 31, 615–623 (2011). https://doi.org/10.1007/s10827-011-0329-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-011-0329-9

Keywords

Navigation