Applications of Artificial Intelligence Methodologies to Behavioral and Social Sciences | Journal of Child and Family Studies Skip to main content

Advertisement

Log in

Applications of Artificial Intelligence Methodologies to Behavioral and Social Sciences

  • Original Paper
  • Published:
Journal of Child and Family Studies Aims and scope Submit manuscript

Abstract

Objectives

Although Artificial Intelligence (AI) has been a part of the computer science field for many decades, it has only recently been applied to different areas of behavioral and social sciences. This article provides an examination of the applications of AI methodologies to behavioral and social sciences exploring the areas where they are now utilized, the different tools used and their effectiveness.

Methods

The study is a systematic research examination of peer-reviewed articles (2010–2019) that used AI methodologies in social and behavioral sciences with a focus on children and families.

Results

The results indicate that artificial intelligence methodologies have been successfully applied to three main areas of behavioral and social sciences, namely (1) to increase the effectiveness of diagnosis and prediction of different conditions, (2) to increase understanding of human development and functioning, and (3) to increase the effectiveness of data management in different social and human services. Random forests, neural networks, and elastic net are among the most frequent AI methods used for prediction, supplementing traditional approaches, while natural language processing and robotics continue to increase their role in understanding human functioning and improve social services.

Conclusions

Applications of AI methodologies to behavioral and social sciences provide opportunities and challenges that need to be considered. Recommendations for future research are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Afzali, M. H., Sunderland, M., Stewart, S., Masse, B., Seguin, J., Newton, N., Teesson, M., & Conrod, P. (2019). Machine-learning prediction of adolescent alcohol use: a cross-study, cross-cultural validation. Addiction, 114(4), 662671. https://doi.org/10.1111/add.14504.

    Article  Google Scholar 

  • AI for Good Summit. (2018). UN Geneva, Switzerland. https://www.itu.int/en/ITUT/AI/2018/Pages/default.aspx.

  • AI Social Good Services. (2019). Transforming social services How cognitive technology is helping to protect the most vulnerable. https://www.ibm.com/watson/advantage-reports/ai-socialgood-social-services.html.

  • Ahn, W., & Vassileva, J. (2016). Machine-learning identifies substance-specific behavioral markers for opiate and stimulant dependence. Drug and Alcohol Dependence, 161, 247–257.

    PubMed  PubMed Central  Google Scholar 

  • Amrit, C., Paauw, T., Aly, R., & Lavric, M. (2017). Identifying child abuse through text mining and machine learning. Expert Systems with Applications: An International Journal, 88(C), 402–418.

    Google Scholar 

  • Askland, K. D., Garnaat, S., Sibrava, N. J., Boisseau, C. L., Strong, D., Mancebo, M., Greenberg, B., Rasmussen, S., & Eisen, J. (2015). Prediction of remission in obsessive compulsive disorder using a novel machine learning strategy. International Journal of Methods in Psychiatric Research, 24(2), 156–169.

    PubMed  PubMed Central  Google Scholar 

  • Battista, P., Salvatore, C., & Castiglioni, I. (2017). Optimizing neuropsychological assessments for cognitive, behavioral, and functional impairment classification: a machine learning study. Behavioural Neurology, 1850909. https://doi.org/10.1155/2017/1850909.

  • Bedaf, S., Gelderblom, G. J., & De Witte, L. (2015). Overview and categorization of robots supporting independent living of elderly people: what activities do they support and how far have they developed. Assistive Technology, 27(2), 88–100.

    PubMed  Google Scholar 

  • Bose, E., Maganti, S., Bowles, K. H., Brueshoff, B. L., & Monsen, K. A. (2019). Machine learning methods for identifying critical data elements in nursing documentation. Nursing Research, 68(1), 65–72.

    PubMed  Google Scholar 

  • Bostrom, N., & Yudkowski, E. (2014). The ethics or artificial Intelligence. In F. William & M. Ramsey (Eds.), The Cambridge handbook of artificial intelligence (pp. 316–330). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Camp, L. J., & Huber, L. L. (2017). Privacy implications of aware, active, and adaptive technologies. In S. Kwon (Ed), Gerontechnology: research, practice, and principles in the field of technology and aging (pp. 91–114). New York, NY: Springer Publishing.

    Google Scholar 

  • Chang, T. S., Coen, M. H., Rue, A. L., Jonaitis, E., Koscik, R., Hermann, B., & Sager, M. (2012). Machine learning amplifies the effect of parental family history of Alzheimer’s disease on list learning strategy. Journal of the International Neuropsychological Society, 18(3), 428–439.

    PubMed  PubMed Central  Google Scholar 

  • Chen, Y., Argentinis, J. E., & Weber, G. (2016). IBM Watson: how cognitive computing can be applied to big data challenges in life sciences research. Clinical Therapeutics, 38(4), 688–701.

    PubMed  Google Scholar 

  • Chen, H. Y., Hou, T. W., & Chuang, C. H., TBPS Research Group. (2010). Applying data mining to explore the risk factors of parenting stress. Expert Systems with Applications, 37(1), 598–601.

    Google Scholar 

  • Cho, S. H., & Lee, S. L. (2018). Prediction model for children's cognitive development using machine learning techniques. International Information Institute (Tokyo). Information, 21(1), 123–130.

    Google Scholar 

  • Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204.

    PubMed  Google Scholar 

  • Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. (2009). Introduction to Algorithms. Cambridge, MA: MIT Press.

  • Cornet, G. (2013). Robot companions and ethics a pragmatic approach of ethical design. International Journal of Bioethics, 24(4), 49–58.

    PubMed  Google Scholar 

  • Crutzen, R., Giabbanelli, P. J., Jander, A., Mercken, L., & de Vries, H. (2015). Identifying binge drinkers based on parenting dimensions and alcohol-specific parenting practices: building classifiers on adolescent-parent paired data. BMC Public Health, 15(1), 747.

    PubMed  PubMed Central  Google Scholar 

  • Ertel, W. (2018). Introduction to artificial intelligence. New York, NY: Springer.

    Google Scholar 

  • Gawande, N. A., Daily, J. A., Siegel, C., Tallent, N. R., & Vishnu, A. (2018). Scaling deep learning workloads: Nvidia dgx-1/pascal and intel knights landing. Future Generation Computer Systems. https://doi.org/10.1016/j.future.2018.04.073.

    Article  Google Scholar 

  • Gillingham, P. (2016). Predictive risk modeling to prevent child maltreatment and other adverse outcomes for service users: inside the ‘black box’ of machine learning. British Journal of Social Work, 46(4), 1044–1058.

    PubMed  Google Scholar 

  • Gillingham, P. (2017). Predictive risk modelling to prevent child maltreatment: insights and implications from Aotearoa/New Zealand. Journal of Public Child Welfare, 11(2), 150–165.

    Google Scholar 

  • Gradus, J. L., King, M. W., Galatzer-Levy, I., & Street, A. E. (2017). Gender differences in machine learning models of trauma and suicidal ideation in veterans of the Iraq and Afghanistan wars. Journal of Traumatic Stress, 30(4), 362–371.

    PubMed  PubMed Central  Google Scholar 

  • Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., & Chen, T. (2018). Recent advances in convolutional neural networks. Pattern Recognition, 77, 354–377.

    Google Scholar 

  • Hamet., P., & Tremblay, J. (2017). Artificial intelligence in medicine. Metabolism Clinical and Experimental, 69, 36–40.

    Google Scholar 

  • Helbing, D., Frey, B. S., Gigerenzer, G., Hafen, E., Hagner, M., Hofstetter, Y., ... & Zwitter, A. (2019). Will democracy survive big data and artificial intelligence? In D. Helbing (Ed.), Towards digital enlightenment (pp. 73–98). Cham: Springer.

  • Hirschberg, J., & Manning, C. D. (2015). Advances in natural language processing. Science, 349(6245), 261–266.

    PubMed  Google Scholar 

  • Ho, T. K. (1995). Random decision forests. In Proceedings of the Third IEEE International Conference on Document Analysis and Recognition, 1, 278–282.

  • Hong, B., Malik, A., Lundquist, J., Bellach, I., & Kontokosta, C. E. (2018). Applications of machine learning methods to predict readmission and length-of-stay for homeless families: the case of WIN shelters in New York City. Journal of Technology in Human Services, 36(1), 89–104.

    Google Scholar 

  • Huijnen, C. A. G. J., Lexis, M. A. S., & de Witte, L. P. (2017). Robots as new tools in therapy and education for children with autism. International Journal of Neurorehabilitation, 4, 278.

    Google Scholar 

  • Ioannidis, K., Chamberlain, S. R., Treder, M. S., Kiraly, F., Leppink, E. W., Redden, S. A., Stein, D. J., Lochner, C., & Grant, J. E. (2016). Problematic internet use (PIU): associations with the impulsive-compulsive spectrum. An application of machine learning in psychiatry. Journal of Psychiatric Research, 83, 94–102.

    PubMed  PubMed Central  Google Scholar 

  • Insel, T. R., Landis, S. C., & Collins, F. S. (2013). The NIH brain initiative. Science, 340(6133), 687–688.

    PubMed  PubMed Central  Google Scholar 

  • Joel, S., Eastwick, P. W., & Finkel, E. J. (2017). Is romantic desire predictable? Machine learning applied to initial romantic attraction. Psychological Science, 28(10), 1478–1489.

    PubMed  Google Scholar 

  • Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15–25.

    Google Scholar 

  • Kessler, R. C., van Loo, H. M., Wardenaar, K. J., Bossarte, R. M., Brenner, L. A., Cai, T., & Zaslavsky, A. M. (2016). Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports. Molecular Psychiatry, 21(10), 1366–1371.

    PubMed  PubMed Central  Google Scholar 

  • Kornfield, R., Sarma, P. K., Shah, D. V., McTavish, F., Landucci, G., Pe-Romashko, K., & Gustafson, D. H. (2018). Detecting recovery problems just in time: application of automated linguistic analysis and supervised machine learning to an online substance abuse forum. Journal of Medical Internet Research, 20(6), e10136. https://doi.org/10.2196/10136.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, Y. L., Tsung, P. K., & Wu, M. (2018). Technology trend of edge AI. In 2018 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), (pp. 1–2). IEEE.

  • Lenhard, F., Sauer, S., Andersson, E., Månsson, K., Mataix-Cols, D., Rück, C., & Serlachius, E. (2018). Prediction of outcome in internet-delivered cognitive behavior therapy for pediatric obsessive-compulsive disorder: a machine learning approach. International Journal of Methods in Psychiatric Research, 27(1), 1–11.

    Google Scholar 

  • Liddy, E.D. (2001). Natural language processing. In Encyclopedia of library and information science, 2nd edn, New York, NY. Marcel Decker, Inc.

  • MacLeod, H., Yang, S., Oakes, K., Connelly, K., & Natarajan, S. (2016). Identifying rare diseases from behavioural data: a machine learning approach. In Connected Health: Applications, Systems and Engineering Technologies Conference, (pp. 130–139).

  • Mettler, T., Sprenger, M., & Winter, R. (2017). Service robots in hospitals: new perspectives on niche evolution and technology affordances. European Journal of Information Systems, 26(5), 451–468.

    Google Scholar 

  • Miller, D. D., & Brown, E. W. (2018). Artificial intelligence in medical practice: the question to the answer? The American Journal of Medicine, 131(2), 129–133.

    PubMed  Google Scholar 

  • Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G., The PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med, 6(7), e1000097. https://doi.org/10.1371/journal.pmed1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  • Montavon, G., Samek, W., & Müller, K. R. (2018). Methods for interpreting and understanding deep neural networks. Digital Signal Processing, 73, 1–15.

    Google Scholar 

  • Oh, J., Yun, K., Hwang, J., & Chae, J. (2017). Classification of suicide attempts through a machine learning algorithm based on multiple systemic psychiatric scales. Frontiers in Psychiatry, 8. https://doi.org/10.3389/fpsyt.2017.00192.

  • Pan, I., Nolan, L. B., Brown, R. R., Khan, R., van der Boor, P., Harris, D. G., & Ghani, R. (2017). Machine learning for social services: a study of prenatal case management in Illinois. American Journal of Public Health, 107(6), 938–944.

    PubMed  PubMed Central  Google Scholar 

  • Pan, Y., Liu, H., Metsch, L. R., & Feaster, D. J. (2017). Factors associated with HIV testing among participants from substance use disorder treatment programs in the US: a machine learning approach. AIDS and Behavior, 21(2), 534–546.

    PubMed  PubMed Central  Google Scholar 

  • Panch, T., Szolovits, P., & Atun, R. (2018). Artificial intelligence, machine learning and health systems. Journal of Global Health, 8(2). https://doi.org/10.7189/jogh.08.020303.

  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., & Vanderplas, J. (2011). Scikit-learn: machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

    Google Scholar 

  • Pouke, M., & Häkkilä, J. (2013). Elderly healthcare monitoring using an avatar-based 3D virtual environment. International Journal of Environmental Research and Public Health, 10, 7283–7298.

    PubMed  PubMed Central  Google Scholar 

  • Pu, X., Fan, K., Chen, X., Ji, L., & Zhou, Z. (2016). Facial expression recognition from image sequences using twofold random forest classifier. Neurocomputing, 168, 1173–1180.

    Google Scholar 

  • Rizzo, A., Lange, B., Buckwalter, J. G., Forbell, E., Kim, J., Sagae, K., Williams, J., Difede, J., Rothbaum, B. O., Reger, G., Parsons, T., & Kenny, P. (2011). SimCoach: an intelligent virtual human system for providing healthcare information and support. International Journal on Disability and Human Development. Special Issue: Disability, Virtual Reality and Assistive Technologies, 10(4), 277–281.

    Google Scholar 

  • Rudin, C., & Wagstaff, K. L. (2014). Machine learning for science and society. Machine Learning, 95, 1–9.

    Google Scholar 

  • Russell, S. J., & Norvig, P. (2010). Artificial intelligence: a modern approach. 3rd eds, Upper Saddle River, New Jersey: Pearson Education, Inc.

    Google Scholar 

  • Ryu, S., Lee, H., Lee, D. K., & Park, K. (2018). Use of a machine learning algorithm to predict individuals with suicide ideation in the general population. Psychiatry Investigation, 15(11), 1030. https://doi.org/10.30773/pi.2018.08.27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartz, I. M., York, P., Nowakowski-Sims, E., & Ramos-Hernandez, A. (2017). Predictive and prescriptive analytics, machine learning and child welfare risk assessment: the Broward County experience. Children and Youth Services Review, 81, 309–320.

    Google Scholar 

  • Siegwart, R., Nourbakhsh, I. R., Scaramuzza, D., & Arkin, R. C. (2011). Introduction to autonomous mobile robots. Cambridge, MA: MIT press.

  • Song, J., Song, T. M., Seo, D. C., & Jin, J. H. (2016). Data mining of web-based documents on social networking sites that included suicide-related words among Korean adolescents. Journal of Adolescent Health, 59(6), 668–673.

    PubMed  Google Scholar 

  • Song, J., Song, T. M., & Lee, J. R. (2018). Stay alert: forecasting the risks of sexting in Korea using social big data. Computers in Human Behavior, 81, 294–302.

    Google Scholar 

  • Stilgoe, J. (2018). Machine learning, social learning and the governance of self-driving cars. Social Studies of Science, 48(1), 25–56.

    PubMed  Google Scholar 

  • Sze, V., Chen, Y. H., Yang, T. J., & Emer, J. S. (2017). Efficient processing of deep neural networks: a tutorial and survey. Proceedings of the IEEE, 105(12), 2295–2329.

    Google Scholar 

  • Takahashi, Y., & Evans, L. T. (2018). An application of machine learning for predicting rearrests: significant predictors for juveniles. Race and Social Problems, 10(1), 42–52.

    Google Scholar 

  • Tangherlini, T. R., Roychowdhury, V., Glenn, B., Crespi, C. M., Bandari, R., Wadia, A., … & Bastani, R. (2016). “Mommy Blogs” and the vaccination exemption narrative: results from a machine-learning approach for story aggregation on parenting social media sites. JMIR Public Health and Surveillance, 2(2). https://doi.org/10.2196/publichealth.6586.

  • Teague, S. J., & Shatte, A. B. (2018). Exploring the transition to fatherhood: feasibility study using social media and machine learning. JMIR Pediatrics and Parenting, 1(2), e12371. https://doi.org/10.2196/12371.

    Article  PubMed  PubMed Central  Google Scholar 

  • Walsh, C. G., Ribeiro, J.D. & Franklin, J.C. (2017). Predicting risk of suicide attempts over time through machine learning. Clinical Psychological Science, 1–12. https://doi.org/10.2196/10754.

  • Wall, D. P., Dally, R., Luyster, R., Jung, J., & DeLuca, T. F. (2012). Use of artificial intelligence to shorten the behavioral diagnosis of autism. PLoS ONE, 7(8), e43855. https://doi.org/10.1371/journal.pone.0043855.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallert, J., Gustafson, E., Held, C., Madison, G., Norlund, F., von Essen, L., Olsson, E., & Martin, G. (2017). Predicting adherence to internet-delivered psychotherapy for symptoms of depression and anxiety after myocardial infarction: machine learning insights from the U-CARE heart randomized controlled trial. Journal of Medical Internet Research, 20(10), e10754. https://doi.org/10.2196/10754.

    Article  Google Scholar 

  • Wang, S. H., Ding, Y., Zhao, W., Huang, Y. H., Perkins, R., Zou, W., & Chen, J. J. (2016). Text mining for identifying topics in the literatures about adolescent substance use and depression. BMC Public Health, 16(1), 279–287.

    PubMed  PubMed Central  Google Scholar 

  • Wang, W., Hernandez, I., Newman, D. A., He, J., & Bian, J. (2016). Twitter analysis: studying US weekly trends in work stress and emotion. Applied Psychology, 65(2), 355–378.

    Google Scholar 

  • Wiechmann, P., Lora, K., Branscum, P., & Fu, J. (2017). Identifying discriminative attributes to gain insights regarding child obesity in hispanic preschoolers using machine learning techniques. In Proceedings IEEE ICTAI, (pp. 11–15). https://doi.org/10.1109/ICTAI.2017.00014.

  • Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., … & Bouwman, J. (2016). The FAIR guiding principles for scientific data management and stewardship. Scientific Data, 3–10. https://doi.org/10.1038/sdata.2016.18.

  • Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301–320.

    Google Scholar 

Download references

Author Contributions

M.R. and S.A.R.: co-designed the study, conducted research review, analyzed the data and wrote the paper. In the introduction section M.R. wrote the sections focused on social and behavioral science and S.A.R. wrote the sections focused on AI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Robila.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

Research involving human participants and/ or animals: This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robila, M., Robila, S.A. Applications of Artificial Intelligence Methodologies to Behavioral and Social Sciences. J Child Fam Stud 29, 2954–2966 (2020). https://doi.org/10.1007/s10826-019-01689-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10826-019-01689-x

Keywords

Navigation