Pyridones as NNRTIs against HIV-1 mutants: 3D-QSAR and protein informatics | Journal of Computer-Aided Molecular Design Skip to main content

Advertisement

Log in

Pyridones as NNRTIs against HIV-1 mutants: 3D-QSAR and protein informatics

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

CoMFA and CoMSIA based 3D-QSAR of HIV-1 RT wild and mutant (K103, Y181C, and Y188L) inhibitory activities of 4-benzyl/benzoyl pyridin-2-ones followed by protein informatics of corresponding non-nucleoside inhibitors’ binding pockets from pdbs 2BAN, 3MED, 1JKH, and 2YNF were analysed to discover consensus features of the compounds for broad-spectrum activity. The CoMFA/CoMSIA models indicated that compounds with groups which lend steric-cum-electropositive fields in the vicinity of C5, hydrophobic field in the vicinity of C3 of pyridone region and steric field in aryl region produce broad-spectrum anti-HIV-1 RT activity. Also, a linker rendering electronegative field between pyridone and aryl moieties is common requirement for the activities. The protein informatics showed considerable alteration in residues 181 and 188 characteristics on mutation. Also, mutants’ isoelectric points shifted in acidic direction. The study offered fresh avenues for broad-spectrum anti-HIV-1 agents through designing new molecules seeded with groups satisfying common molecular fields and concerns of mutating residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

NNRTIs:

Non-nucleoside reverse transcriptase inhibitors

QSAR:

Quantitative structure–activity relationship

CoMFA:

Comparative molecular field analysis

CoMSIA:

Comparative molecular similarity indices analysis

NNIBP:

Non-nucleoside inhibitors binding pocket

References

  1. Global report: UNAIDS report on the global AIDS epidemic (2012) http://www.unaids.org/en/media/unaids/contentassets/documents/epidemiology/2012/gr2012/20121120_UNAIDS_Global_Report_2012_en.pdf. Accessed on 9 April 2013

  2. Imami N, Gotch F (2003) Twenty years of HIV-1 research: what the future holds. Nat Immunol 4:501

    Article  CAS  Google Scholar 

  3. http://www.ncbi.nlm.nih.gov/genome/?term=txid11676[Organism:exp]

  4. Clercq ED (1993) HIV-1specific RT inhibitors: highly selective inhibitors of human immunodeficiency virus type 1 that are specifically targeted at the viral reverse transcriptase. Med Res Rev 13:229–258

    Article  Google Scholar 

  5. Spence RA, Kati WM, Anderson KS, Johnson KA (1995) Mechanism of inhibition of HIV-1 reverse transcriptase by nonnucleoside inhibitors. Science 267:988–993

    Article  CAS  Google Scholar 

  6. Esnouf R, Ren J, Ross C, Jones Y, Stammers D, Stuart D (2006) Mechanism of inhibition of HIV-1 reverse transcriptase by non- nucleoside inhibitors. Nat Struct Biol 2:303–308

    Article  Google Scholar 

  7. Figueiredo A, Moore Katie L, Mak J, Sluis-Cremer N, de Bethune MP, Tachedjian G (2006) Potent nonnucleoside reverse transcriptase inhibitors target HIV-1 Gag-Pol. PLoS Pathog 2:1051–1059

    Article  CAS  Google Scholar 

  8. De Béthune MP (2010) Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: a review of the last 20 years (1989–2009). Antivir Res 85:75–90

    Article  Google Scholar 

  9. Ren J, Stammers DK (2008) Structural basis for drug resistance mechanisms for non-nucleoside inhibitors of HIV reverse transcriptase. Virus Res 134:157–170

    Article  CAS  Google Scholar 

  10. Petropoulos CJ, Parkin NT, Limoli KL, Lie YS, Wrin T, Huang W, Tian H, Smith D, Winslow GA, Capon DJ, Whitcomb JM (2000) A novel phenotypic drug susceptibility assay for human immunodeficiency virus type 1. Antimicrob Agents Chemother 44:920–928

    Article  CAS  Google Scholar 

  11. Young SD, Britcher SF, Tran LO, Payne LS, Lumma WC, Lyle TA, Huff JR, Anderson PS, Olsen DB, Carroll SS (1995) L-743, 726 (DMP-266): a novel, highly potent nonnucleoside inhibitor of the human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother 39:2602–2605

    Article  CAS  Google Scholar 

  12. Byrnes VW, Sardana VV, Schleif WA, Condra JH, Waterbury JA, Wolfgang JA, Long WJ, Schneider CL, Schlabach AJ, Wolanski BS, Graham DJ, Gotlib L, Rhodes A, Titus DL, Roth E, Blahy OM, Quintero JC, Satszewski S, Emini EA (1993) Comprehensive mutant enzyme and viral variant assessment of human immunodeficiency virus type 1 reverse transcriptase resistance to nonnucleoside inhibitors. Antimicrob Agents Chemother 37:1576–1579

    Article  CAS  Google Scholar 

  13. Benjahad A, Croisy M, Monneret C, Bisagni E, Mabire D, Coupa S, Poncelet A, Csoka I, Guillemont J, Meyer C, Andries K, Pauwels R, de Bthune MP, Himmel DM, Das K, Arnold E, Nguyen CH, Grierson David S (2005) 4-Benzyl and 4-Benzoyl-3- dimethylaminopyridin-2(1H)-ones: in vitro evaluation of new C-3-amino-substituted and C-5, 6-alkyl-substituted analogues against clinically important hiv mutant strains. J Med Chem 48:1948–1964

    Article  CAS  Google Scholar 

  14. Guillemont J, Benjahad A, Oumouch S, Decrane L, Palandjian P, Vernier D, Queguiner L, Andries K, de Bethune MP, Hertogs K, Grierson David S, Nguyen CH (2009) Synthesis and biological evaluation of C-5 methyl substituted 4-arylthio and 4-aryloxy-3-iodopyridin-2(1H)-one type anti-HIV agents. J Med Chem 52:7473–7487

    Article  CAS  Google Scholar 

  15. Benjahad A, Oumouch S, Guillemont J, Pasquir E, Mabire D, Andries K, Nguyen CH, Grierson DS (2006) Structure-activity relationship in the 3-iodo-4-phenoxypyridinone(IOPY) series: the nature of the C-3 substituent on anti-HIV activity. Bioorg Med Chem 17:712–716

    Google Scholar 

  16. Garg R, Gupta SP, Gao H, Babu MS, Debnath AK, Hansch C (1999) Comparative quantitative structure-activity relationship studies on anti-HIV drugs. Chem Rev 99:3525–3601

    Article  CAS  Google Scholar 

  17. Pungpo P, Saparpakorn P, Wolschann P, Hannongbua S (2006) Computer-aided molecular design of highly potent HIV-1 RT inhibitors: 3D QSAR and molecular docking studies of efavirenz derivatives. SAR QSAR Environ Res 17:353–370

    Article  CAS  Google Scholar 

  18. Carlsson J, Boukharta L, Aqvist J (2008) Combining docking, molecular dynamics and the linear interaction energy method to predict binding modes and affinities for non-nucleoside inhibitors to HIV-1 reverse transcriptase. J Med Chem 51:2648–2656

    Article  CAS  Google Scholar 

  19. Prabhakar YS, Solomon VR, Rawal RK, Gupta MK, Katti SB (2004) CP-MLR/PLS directed structure-activity modeling of the HIV-1RT inhibitory activity of 2, 3-diaryl-1, 3-thiazolidin-4-ones. QSAR Comb Sci 23:234–244

    Article  CAS  Google Scholar 

  20. Rawal RK, Prabhakar YS, Katti SB, Clercq ED (2005) 2-(Aryl)-3- furan-2-ylmethylthiazolidin-4-ones as selective HIV-RT inhibitors. Bioorg Med Chem 13:6771–6776

    Article  CAS  Google Scholar 

  21. Rawal RK, Prabhakar YS, Katti SB (2007) Molecular surface features in modeling the HIV-1 RT inhibitory activity of 2-(2, 6-disubstituted phenyl)-3-(substituted pyrimidin-2-yl)-thiazolidin-4-ones. QSAR Comb Sci 26:398–406

    Article  CAS  Google Scholar 

  22. Rawal RK, Tripathi R, Katti SB, Pannecouque C, Clercq ED (2008) Design and synthesis of 2-(2, 6-dibromo-phenyl)-3-heteroaryl-1, 3- thiazolidin-4-ones as anti-HIV agents. Eur J Med Chem 43:2800–2806

    Article  CAS  Google Scholar 

  23. Murugesan V, Prabhakar YS, Katti SB (2009) CoMFA and CoMSIA studies on thiazolidin-4-one as anti-HIV-1 agents. J Mol Graph Model 27:735–743

    Article  CAS  Google Scholar 

  24. Murugesan V, Tiwari VS, Saxena R, Tripathi R, Paranjape R, Kulkarni S, Makwana N, Suryawanshi R, Katti SB (2011) Lead optimization at C-2 and N-3 positions of thiazolidin-4-ones as HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg Med Chem 19:6919–6926

    Article  CAS  Google Scholar 

  25. Rawal RK, Murugesan V, Katti SB (2012) Structure-activity relationship studies on clinically relevant HIV-1 NNRTIs. Curr Med Chem 19:5364–5380

    Article  CAS  Google Scholar 

  26. Cramer RD III, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  Google Scholar 

  27. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (COMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146

    Article  CAS  Google Scholar 

  28. Himmel DM, Das K, Clark AD Jr, Hughes SH, Benjahad A, Oumouch S, Guillemont J, Coupa S, Poncelet A, Csoka I, Meyer C, Andries K, Nguyen CH, Grierson DS, Arnold E (2005) Crystal structures for HIV-1 reverse transcriptase in complexes with three pyridinone derivatives: a new class of non-nucleoside inhibitors effective against a broad range of drug-resistant strains. J Med Chem 48:7582–7591

    Article  CAS  Google Scholar 

  29. Lansdon EB, Brendza KM, Hung M, Wang R, Mukund S, Jin D, Birkus G, Kutty N, Liu X (2010) Crystal structures of HIV-1 reverse transcriptase with etravirine (TMC125) and rilpivirine (TMC278): implications for drug design. J Med Chem 53:4295–4299

    Article  CAS  Google Scholar 

  30. Ren J, Nichols C, Bird L, Chamberlain P, Weaver K, Short S, Stuart DI, Stammers DK (2001) Structural mechanisms of drug resistance for mutations at codons 181 and 188 in HIV-1 reverse transcriptase and the improved resilience of second generation non-nucleoside inhibitors. J Mol Biol 312:795–805

    Article  CAS  Google Scholar 

  31. Chong P, Sebahar P, Youngman M, Garrido D, Zhang H, Stewart EL, Nolte RT, Wang L, Ferris RG, Edelstein M, Weaver K, Mathis A, Peat A (2012) Rational design of potent non-nucleoside inhibitors of HIV-1 reverse transcriptase. J Med Chem 55:10601

    Article  CAS  Google Scholar 

  32. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2789

    Article  CAS  Google Scholar 

  33. Clark M, Cramer RD III, Van Opdenbosch N (1989) Opdenbosch. Validation of the general-purpose tripos 5.2 force field. J Comput Chem 10:982–1012

    Article  CAS  Google Scholar 

  34. Barakat MT, Dean PM (1990) Molecular structure matching by simulated annealing. I. A comparison between different cooling schedules. J Comput Aided Mol Des 4:295–316

    Article  CAS  Google Scholar 

  35. SYBYL, version 7.3 (2006) Tripos Associates, St. Louis, MO

  36. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (COMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146

    Article  CAS  Google Scholar 

  37. Viswanadhan VN, Ghose AK, Revenkar GR, Robins RK (1989) Atomic physicochemical parameters for three dimensional structure directed quantitative structureactivity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring antibiotics. J Chem Inf Comput Sci 29:163–172

    Article  CAS  Google Scholar 

  38. Klebe G (1994) The use of composite crystal-field environments in molecular recognition and the de novo design of protein ligands. J Mol Biol 237:212–235

    Article  CAS  Google Scholar 

  39. Stahle L, Wold S (1988) 6 multivariate data analysis and experimental design in biomedical research. Prog Med Chem 25:291–338

    Article  CAS  Google Scholar 

  40. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  41. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  42. MOE: The Molecular Operating Environment from Chemical Computing Group Inc., 1255 University St., Suite 1600, Montreal, Quebec, Canada H3B 3X3. http://www.chemcomp.com

  43. Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812–3814

    Article  CAS  Google Scholar 

  44. Mi H, Guo N, Kejariwal A, Thomas PD (2007) PANTHER version 6: protein sequence and function evolution data with expanded representation of biological pathways. Nucleic Acids Res 35(Database issue):D247–D252

    Google Scholar 

  45. Capriotti E, Fariselli P, Casadio R (2005) I-mutant 2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 33(Web Server issue):306–310

    Google Scholar 

  46. Parthiban V, Gromiha MM, Schomburg D (2006) CUPSAT: prediction of protein stability upon point mutations. Nucleic Acids Res 34:239–242

    Article  Google Scholar 

  47. Willard L, Ranjan A, Zhang H, Monzavi H, Boyko RF, Sykes BD, Wishart DS (2003) VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res 31:3316–3319

    Article  CAS  Google Scholar 

  48. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  CAS  Google Scholar 

  49. Sillero A, Maldonado A (2006) Isoelectric point determination of proteins and othermacromolecules: oscillating method. Comput Biol Med 36:157–166

    Article  CAS  Google Scholar 

  50. Calculation of protein isoelectric point. http://isoelectric.ovh.org/

  51. Krenn BM, Egorov A, Romanovskaya-Romanko E, Wolschek M, Nakowitsch S, Ruthsatz T, Kiefmann B, Morokutti A, Humer J, Geiler J, Cinatl J, Michaelis M, Wressnigg N, Sturlan S, Ferko B, Batishchev OV, Indenbom AV, Zhu R, Kastner M, Hinterdorfer P, Kiselev O, Muster T, Romanova J (2011) Single HA2 mutation increases the infectivity and immunogenicity of a live attenuated H5N1 intranasal influenza vaccine candidate lacking NS1. PLoS ONE 6:e18577

    Article  CAS  Google Scholar 

  52. Ren J, Milton J, Weaver KL, Short SA, Stuart DI, Stammers DK (2000) Structural basis for the resilience of Efavirenz (DMP-266) to drug resistance mutations in HIV-1 reverse transcriptase. Structure 8:1089–1094

    Article  CAS  Google Scholar 

  53. Das K, Bauman JD, Clark AD Jr, Frenkel YV, Lewi PJ, Shatkin AJ, Hughes SH, Arnold E (2008) High-resolution structures of HIV-1 reverse transcriptase/TMC278 complexes: strategic flexibility explains potency against resistance mutations. PNAS 105:1466–1471

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Dr. Shreekant Deshpande and V. Murugesan for helpful discussion and Ms. Neelam Mishra for technical help. Two of the authors, UD and SV, thank CSIR and DST, New Delhi, respectively, for senior research fellowships. CDRI Communication No.8492

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yenamandra S. Prabhakar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1495 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debnath, U., Verma, S., Jain, S. et al. Pyridones as NNRTIs against HIV-1 mutants: 3D-QSAR and protein informatics. J Comput Aided Mol Des 27, 637–654 (2013). https://doi.org/10.1007/s10822-013-9667-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-013-9667-1

Keywords

Navigation