Similarity reasoning for the semantic web based on fuzzy concept lattices: An informal approach | Information Systems Frontiers Skip to main content
Log in

Similarity reasoning for the semantic web based on fuzzy concept lattices: An informal approach

  • Published:
Information Systems Frontiers Aims and scope Submit manuscript

Abstract

Similarity Reasoning in the presence of vague information is becoming fundamental in several research areas and, in particular, in the Semantic Web. Fuzzy Formal Concept Analysis (FFCA) is a generalization of Formal Concept Analysis (FCA) for modeling uncertainty information. Although FFCA has become very interesting for supporting different activities for the development of the Semantic Web, in the literature it is usually addressed at a technical level and intended for a restricted audience. This paper proposes a similarity measure for FFCA concepts. The key notions underlying the proposed approach are presented informally, in order to reach a broad audience of readers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali, R., & Beg, S. (2009). Automatic performance evaluation of web search systems using rough set based rank aggregation. In Proc. of the first int. conf. on Intelligent Human Computer Interaction (IHCI) (pp. 344–358).

  • Bai, L., & Liu, M. (2008). A fuzzy-set based semantic similarity matching algorithm for web service. In Proc. of the IEEE int. conference on services computing (Vol. 2). IEEE Computer Society.

  • Belohlávek, R., Outrata, J., & Vychodil, V. (2008). Fast factorization by similarity of fuzzy concept lattices with hedges. International Journal of Foundations of Computer Science, 19(2), 255–269.

    Article  Google Scholar 

  • Berners-Lee, T., et al. (2001). The semantic web. Scientific American.

  • Beydoun, G. (2009). Formal concept analysis for an e-learning semantic web. Expert Systems with Applications, 36(8), 10952–10961.

    Article  Google Scholar 

  • Buche, P., Dibie-Barthlemy, J., Haemmerl, O., & Hignette, G. (2006). Fuzzy semantic tagging and flexible querying of XML documents extracted from the web. Journal of Intelligent Information Systems, 26(1), 25–40.

    Article  Google Scholar 

  • Castano, S., De Antonellis, V., Fugini, M. G., & Pernici, B. (1998). Conceptual schema analysis: Techniques and applications. ACM Transactions on Database Systems, 23(3), 286–333.

    Article  Google Scholar 

  • Doherty, P., Grabowski, M., Lukaszewicz, W., & Szalas, A. (2003). Towards a framework for approximate ontologies. Fundamenta Informaticae, 57, 147–165.

    Google Scholar 

  • Fellbaum, C. (1998). Semantic network of english: The mother of all wordNets. Computers and the Humanities, 32, 209–220.

    Article  Google Scholar 

  • Formica, A. (2006). Ontology-based concept similarity in formal concept analysis. Information Sciences, 176(18), 2624–2641.

    Article  Google Scholar 

  • Formica, A. (2008). Concept similarity in formal concept analysis: An information content approach. Knowledge-Based Systems, 21(1), 80–87.

    Article  Google Scholar 

  • Formica, A. (2010). Concept similarity in fuzzy formal concept analysis for semantic web. International Journal of Uncertainty, Fuzziness And Knowledge-Based Systems, 18(2), 153–167.

    Article  Google Scholar 

  • Formica, A. (2012). Semantic web search based on rough sets and fuzzy formal concept analysis. Knowledge-Based Systems, 26, 40–47.

    Article  Google Scholar 

  • Hwang, S., Kim, H., & Yang, H. (2005). A FCA-based ontology construction for the design of class hierarchy. Computational science and its applications (ICCSA), LNCS (Vol. 3842, pp. 827–835).

  • Jiang, Y., Wang, J., Tang, S., & Xiao, B. (2009). Reasoning with rough description logic: An approximate concepts approach. Information Sciences, 179, 600–612.

    Article  Google Scholar 

  • Kim, B., & Park, Y. (2001). Web search using dynamic keyword suggestion based on formal concept analysis. In W. Smari (Ed.), Proc. of the ISCA 3rd Int. Conf. on Information Reuse and Integration (IRI) (pp. 108–114). 27–29 November 2001. Las Vegas, Nevada, USA.

  • Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2, 83–97.

    Article  Google Scholar 

  • Lin, D. (1998). An information-theoretic definition of similarity. In Proc. of the int. conference on machine learning (pp. 296–304). Madison: Morgan Kaufmann.

    Google Scholar 

  • Lukasiewicz, T., & Straccia, U. (2008). Managing uncertainty and vagueness in description logics for the semantic web. Journal of Web Semantics, 6(4), 291–308.

    Article  Google Scholar 

  • Maarek, Y. S., Berry, D. M., & Kaiser, G. E. (1991). An information retrieval approach for automatically constructing software libraries. IEEE Transactions on Software Engineering, 17(8), 800–813.

    Article  Google Scholar 

  • Park, S., Suresh, N. C., & Jeong, B. (2008). Sequence-based clustering for web usage mining: A new experimental framework and ANN-enhanced K-means algorithm. Data & Knowledge Engineering, 65(3), 512–543.

    Article  Google Scholar 

  • Resnik, P. (1995). Using information content to evaluate semantic similarity in a taxonomy. In Proc. of the int. joint conference on artificial intelligence, (pp. 448–453). Montreal: Morgan Kaufmann. Accessed 20–25 August 1995.

    Google Scholar 

  • Simou, N., Stoilos, G., Tzouvaras, V., Stamou, G. B., & Kollias, S. D. (2008). Storing and querying fuzzy knowledge in the semantic web. ISWC Workshop Uncertainty Reasoning for the Semantic Web (URSW), Karlsruhe, Germany.

  • Stumme, G., & Maedche, A. (2001). FCA-MERGE: Bottom-up merging of ontologies. In Proc. of International Joint Conference on Artificial Intelligence (IJCAI), (pp. 225–234). Seattle, USA.

  • Tho, Q. T., Hui, S. C., Cheuk, A., Fong, M., & Cao, T. H. (2006). Automatic fuzzy ontology generation for semantic web. IEEE Transactions on Knowledge and Data Engineering, 18(6), 842–856.

    Article  Google Scholar 

  • Tversky, A. (1977). Features of similarity. Psychological Review, 84(4), 327–352.

    Article  Google Scholar 

  • Wang, L., & Liu, X. (2008). A new model of evaluating concept similarity. Knowledge-Based Systems, 21(8), 842–846.

    Article  Google Scholar 

  • Wille, R. (1982). Restructuring lattice theory: An approach based on hierarchies of concepts. In I. Rival (Ed.), Proc. of ordered sets (pp. 445–470). Dordrecht: Reidel.

    Google Scholar 

  • WordNet: A lexical database for the English language. http://www.cogsci.princeton.edu/.

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.

    Article  Google Scholar 

  • Zhang, F., Ma, Z. M., Fan, G., & Wang, X. (2010). Automatic fuzzy semantic web ontology learning from fuzzy object-oriented database model. Database and Expert Systems Applications (DEXA), LNCS (Vol. 6261, pp. 16–30).

  • Zhao, Y., Halang, W., & Wang, X. (2007). Rough ontology mapping in E-business integration. Studies in Computational Intelligence, 37, 75–93.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Formica.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Formica, A. Similarity reasoning for the semantic web based on fuzzy concept lattices: An informal approach. Inf Syst Front 15, 511–520 (2013). https://doi.org/10.1007/s10796-011-9340-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10796-011-9340-y

Keywords

Navigation