Quantum Competitive Neural Network | International Journal of Theoretical Physics Skip to main content
Log in

Quantum Competitive Neural Network

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum Neural Network (QNN) is a fledging science built upon the combination of classical neural network and quantum computing. After analyzing of traditional competitive neural network, this paper firstly presents a Quantum Competitive Neural Network (QCNN) that can recognize patterns and classify patterns via quantum competition. Contrasting to the conventional competitive neural network, the storage capacity or memory capacity of the QCNN is exponentially increased by a factor of 2n, where n is the number of qubit. The QCNN has no weights, does not need to learn and update weights, which accelerates the learning process of the network. Besides, the case analysis validates the feasibility and validity of the QCNN in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Barenco, A., Bennett, C.H., Cleve, R., Di Vincenzo, D.P., Margolus, N., Shor, P.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)

    Article  ADS  Google Scholar 

  2. Duan, L.-M., Guo, G.-C.: Probabilistic cloning and identification of linearly independent quantum states. Phys. Rev. Lett. 80, 4999–5002 (1998)

    Article  ADS  Google Scholar 

  3. Gupta, S., Zia, R.K.P.: Quantum neural networks. arXiv:quant-ph/0201144 v1, 30 Jan. (2002)

  4. Kak, S.C.: On quantum neural computing. Inf. Sci. 83, 143–160 (1995)

    Article  Google Scholar 

  5. Kouda, N., Matsui, N., Nishimura, H.: Image compression by layered quantum neural networks. Neural Process. Lett. 16(1), 67–80 (2002)

    Article  MATH  Google Scholar 

  6. Kouda, N., Matsui, N., Nishimura, H., Peper, F.: Qubit Neural Network and Its Learning Efficiency, Neural Computing and Applications. Springer, Berlin (2005). doi:10.1007/s00521-004-0446-8

    Google Scholar 

  7. Kouda, N., Matsui, N., Nishimura, H., Peper, F.: An examination of qubit neural network in controlling an inverted pendulum. Neural Process. Lett. 22(1), 277–290 (2005)

    Article  Google Scholar 

  8. Li, W.-G.: Entangled neural networks. http://www.cic.unb.br/~weigang/qc/enn2000.pdf

  9. Li, W.-G.: Quantum neural computing study. http://www.cic.unb.br/~weigang/qc/enn2000.pdf

  10. Liu, Y., Long, G.L., Sun, Y.: Analytic one-bit and CNOT gate constructions of general n-qubit controlled gates. Int. J. Quantum Inf. 6(3), 447–462 (2008)

    Article  MATH  Google Scholar 

  11. Long, G.L., Sun, Y.: Efficient scheme for initializing a quantum register with an arbitrary superposed state. Phys. Rev. A 64, 014303 (2001)

    Article  ADS  Google Scholar 

  12. Menneer, T.: Quantum artificial neural networks. Ph.D. thesis of The Univ. of Exeter, UK (1998)

  13. Menneer, T., Narayanan, A.: Quantum-inspired neural networks. Tech. Rep. R329, Univ. of Exeter (1995)

  14. Nie, X., Cao, J.: Multistability of competitive neural networks with time-varying and distributed delays. Nonlinear Anal., Real World Appl. 10, 928–942 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Palomo, E.J., Domnguez, E., Luque, R.M., Munoz, J.: A competitive neural network for intrusion detection systems. MCO 2008, CCIS 14, pp. 530–537 (2008)

  16. Perus, M.: Neuro-quantum parallelism in brain-mind and computer. Informatica 20, 173–183 (1996)

    Google Scholar 

  17. Perus, M., Bischof, H.: Quantum-wave pattern recognition: from simulations towards implementation. arXiv:quant-ph/0303092 v2 27 Mar. (2003)

  18. Schutzhold, R.: Pattern recognition on a quantum computer. arXiv:quant-ph/0208063v3 3 Dec. (2002)

  19. Shafee, F.: Entangled quantum networks. Technical report. http://arxiv.org/ftp/quantph/papers/0203/0203010.pdf (2002)

  20. Trugenberger, C.A.: Quantum pattern recognition, (Invited Talk at the 1st Feynman Festival, Univ. of Maryland, College Park, August 2002), arXiv:quant-ph/0210176

  21. Ventura, D.: Implementing competitive learning in a quantum system. In: Proceedings of the International Joint Conference on Neural Networks ({IJCNN}’99), paper 513, 1999

  22. Ventura, D., Martinez, T.R.: Initializing the amplitude distribution of a quantum state. Found. Phys. Lett. 12(6), 547–559 (1999)

    Article  MathSciNet  Google Scholar 

  23. Ventura, D., Martinez, T.R.: Quantum associative memory. Inf. Sci. 124, 273–296 (2000)

    Article  MathSciNet  Google Scholar 

  24. Zhou, R.G., Ding, Q.: Quantum M-P neural network. Int. J. Theor. Phys. 46(12), 3209–3215 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhou, R.G., Ding, Q.: Quantum pattern recognition with probability of 100%. Int. J. Theor. Phys. 47(5), 1278–1285 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zhou, R.G., Jiang, N., Ding, Q.: Model and training of QNN with weight. Neural Process. Lett. 24(3), 261–269 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rigui Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, R. Quantum Competitive Neural Network. Int J Theor Phys 49, 110–119 (2010). https://doi.org/10.1007/s10773-009-0183-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-009-0183-y