A new speech enhancement adaptive algorithm based on fullband–subband MSE switching | International Journal of Speech Technology Skip to main content
Log in

A new speech enhancement adaptive algorithm based on fullband–subband MSE switching

  • Published:
International Journal of Speech Technology Aims and scope Submit manuscript

Abstract

This paper presents a new fullband–subband switching adaptive speech enhancement algorithm, based on mean square error estimation. The proposed algorithm is able to automatically switch between two adaptive filtering algorithms, i.e. the two-channel fullband normalized least mean square (TC-FNLMS) algorithm and the two-channel subband normalized least mean square (TC-SNLMS), where, the proposed switching mechanism leads to a significant improvement in the convergence speed performance of the proposed algorithm. To confirm the efficiency and the good performances of the proposed algorithm in comparison with the fullband and subband versions of the two channel NLMS algorithm, several experiments were carried out in terms of the segmental signal-to-noise-ratio (SegSNR), segmental mean square error (SegMSE), system mismatch (SM) and cepstral distance (CD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Benesty, J., & Cohen, I. (2018) Single-channel speech enhancement in the time domain. In: Canonical correlation analysis in speech enhancement. Springer Briefs in Electrical and Computer Engineering. Cham: Springer.

  • Combescure, P. (1981). 20 listes de dix phrases phonétiquement équilibrées. Revue d’Acoustique,56, 34–38.

    Google Scholar 

  • Deller, J., Proakis, J., & Hansen, J. (1993). Discrete time processing of speech signals. New York: MacMillan Publishing.

    Google Scholar 

  • Dixit, S., & Mulge, M. Y. (2014). Review on speech enhancement techniques. International Journal of Computer Science and Mobile Computing,3(8), 285–290.

    Google Scholar 

  • Djendi, M. (2018). An efficient wavelet-based adaptive filtering algorithm for automatic blind speech enhancement. International Journal of Speech Technology,21, 355–367.

    Article  Google Scholar 

  • Djendi, M., & Bendoumia, R. (2013). A new adaptive filtering subband algorithm for two channel acoustic noise reduction and speech enhancement. Computers & Electrical Engineering,39(8), 2531–2550.

    Article  Google Scholar 

  • Djendi, M., & Bendoumia, R. (2016). Improved subband-forward algorithm for acoustic noise reduction and speech quality enhancement. Applied Soft Computing,42, 132–143.

    Article  Google Scholar 

  • Djendi, M., Gilloire, A., & Scalart, P. (2006). Noise cancellation using two closely spaced microphones: experimental study with a specific model and two adaptive algorithms. IEEE Int. Conf. ICASSP, Toulouse, France, 1419 May 2006 (Vol. 3, pp. 744748).

  • Djendi, M., Gilloire, A., & Scalart, P. (2007). New frequency domain post-filters for noise cancellation using two closely spaced microphones. Proc. EUSIPCO, Poznan, 38 Sep. (Vol. 1, pp. 218221).

  • Djendi, M., Henni, R., & Sayoud, A. (2016). A new dual forward BSS based RLS algorithm for speech enhancement. International Conference on Engineering and MIS, ICEMIS, Agadir, Morooco.

  • Djendi, M., & Zoulikha, M. (2018). A new efficient backward BSS crosstalk-resistant algorithm for automatic blind speech quality enhancement. International Journal of Speech Technology,21, 809–823.

    Article  Google Scholar 

  • Ghribi, K., Djendi, M., & Berkani, D. (2016). A new wavelet-based forward BSS algorithm for acoustic noise reduction and speech quality enhancement. Applied Acoustics,105, 55–66.

    Article  Google Scholar 

  • Habets, E. A. P., & Benesty, J. (2013). Multi-microphone noise reduction based on orthogonal noise signal decompositions. IEEE Transactions on Audio, Speech and Language Processing,21(6), 1123–1133.

    Article  Google Scholar 

  • Henni, R., Djendi, M., & Djebari, M. (2019). A new efficient two-channel fast transversal adaptive filtering algorithm for blind speech enhancement and acoustic noise reduction. Computer and Electrical Engineering,73, 349–368.

    Article  Google Scholar 

  • Hu, Y., & Loizou, P. C. (2008). Evaluation of objective quality measures for speech enhancement. IEEE Transactions on Audio, Speech and Language Processing,16(1), 229–238.

    Article  Google Scholar 

  • Kim, L. H., & Hasegawa-Johnson, M. (2012). Optimal multi-microphone speech enhancement in cars. Digital signal processing for in-vehicle systems and safety (pp. 195–204). Berlin: Springer.

    Book  Google Scholar 

  • Kuo, S. M., & Peng, W. M. (1999). Asymmetric crosstalk-resistant adaptive noise canceller. Proc. IEEE workshop on Signal Processing System, pp. 605–614.

  • Lee, K. A., & Gan, W. S. (2004). Improving convergence of the NLMS algorithm using constrained subband updates. IEEE Signal Processing Letters,11(9), 736–739.

    Article  Google Scholar 

  • Loizou, P. C. (2007). Speech enhancement: Theory and practice. New York: CRC Press.

    Book  Google Scholar 

  • Loizou, P. C. (2017). Speech enhancement: theory and practice (2nd ed.). Boca Raton: CRC Press, Taylor & Francis Group.

    Google Scholar 

  • Man Kima, S., & Kook Kim, H. (2014). Noise variance estimation based on dual-channel phase difference for speech enhancement. Digital Signal Processing,26, 169–182.

    Article  Google Scholar 

  • Nabi, W., Aloui, N., & Cherif, A. (2016). Speech enhancement in dual-microphone mobile phones using Kalman filter. Applied Acoustics,109, 1–4.

    Article  Google Scholar 

  • Nabi, W., Aloui, N., & Cherif, A. (2017). An improved speech enhancement algorithm for dual-channel mobile phones using wavelet and genetic algorithm. Computers & Electrical Engineering,62, 692–705.

    Article  Google Scholar 

  • Nabi, W., BenNasr, M., Aloui, N., & Cherif, A. (2018). A dual-channel noise reduction algorithm based on the coherence function and the bionic wavelet. Applied Acoustics,131, 186–191.

    Article  Google Scholar 

  • Ni, J., & Li, F. (2010). A variable step-size matrix normalized subband adaptive filter. IEEE Transactions on Audio, Speech and Language Processing,18(6), 1290–1299.

    Article  Google Scholar 

  • Rabiner, L., & Juang, B. H. (1993). Fundamentals of speech recognition. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Sayed, A. H. (2003). Fundamentals of adaptive filtering. New York: Wiley.

    Google Scholar 

  • Sayoud, A., Djendi, M., Medahi, S., & Guessoum, A. (2018). A dual fast NLMS adaptive filtering algorithm for blind speech quality enhancement. Applied Acoustics,135, 101–110.

    Article  Google Scholar 

  • Seo, J. H., & Park, P. G. (2014). Variable individual step-size subband adaptive filtering algorithm. Electronics Letters,50(3), 177–178.

    Article  Google Scholar 

  • Syskind Pedersen, M., Larsen, J., Kjems, U., & Parra, L. C. (2007). A survey of convolutive blind source separation methods. Springer Handbook on speech processing and speech communication. Cham: Springer.

    Google Scholar 

  • Thumchirdchupong, H., & Tangsangiumvisai, N. (2013). A two-microphone noise reduction scheme for hands-free telephony in a car environment. 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology.

  • Upadhyay, N., & Jaiswal, R. K. (2016). Single channel speech enhancement: Using Weiner filtering recursive noise estimation. Procedia Computer Science,84, 22–30.

    Article  Google Scholar 

  • Van Gerven, S,. & Van Compernolle, D. (1992). Feedforward and Feedback in a symmetric adaptive noise canceller: Stability analysis in a simplified case. Proc. IEEE. EUSIPCO, Belgium, Brussels (Vol. 24–27, pp. 1081–1084).

  • Van Gerven, S., & Van Compernolle, D. (1995). Signal separation by symmetric adaptive decorrelation: Stability, convergence, and uniqueness. IEEE Transactions on Signal Processing,74(3), 1602–1612.

    Article  Google Scholar 

  • Yu, Y., Zhao, H., & Chen, B. (2016). A new normalized subband adaptive filter algorithm with individual variable step sizes. Circuits, Systems and Signal Process,35(4), 1407–1418.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Djendi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayoud, A., Djendi, M. & Guessoum, A. A new speech enhancement adaptive algorithm based on fullband–subband MSE switching. Int J Speech Technol 22, 993–1005 (2019). https://doi.org/10.1007/s10772-019-09651-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10772-019-09651-4

Keywords