Design and Evaluation of a Carbon Nanotube-Based Programmable Architecture | International Journal of Parallel Programming Skip to main content
Log in

Design and Evaluation of a Carbon Nanotube-Based Programmable Architecture

  • Published:
International Journal of Parallel Programming Aims and scope Submit manuscript

Abstract

In the hunt to find a replacement to CMOS, material scientists are developing a wide range of nanomaterials and nanomaterial-based devices that offer significant performance improvements. One example is the Carbon Nanotube Field Effect Transistor, or CNFET, which replaces the traditional silicon channel with an array of semiconducting carbon nanotubes (CNTs). Given the increased variation and defects of nanometer-scale fabrication, and the regular nature of bottom-up self-assembly, field programmable devices are a promising initial application for such technologies. In this paper, we detail the design and evaluation of a novel nanomaterial-based architecture called FPCNA (Field Programmable Carbon Nanotube Array). New nanomaterial-based circuit building blocks are developed and characterized, including a lookup table created entirely from continuous CNT ribbons. To accurately determine the performance of these building blocks, we create variation-aware physical design tools with statistical timing analysis that can handle both Gaussian and non-Gaussian random variables. When the FPCNA architecture is evaluated using this CAD flow, we see a 2.75× performance improvement over an equivalent CMOS FPGA at a 95% yield. In addition, FPCNA offers a 5.07× footprint reduction compared to the baseline FPGA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Betz V., Rose J., Marquardt A.: Architecture and CAD for Deep-Submicron FPGAs. Kluwer Academic Publishers, New York, NY (1999)

    Google Scholar 

  2. Copen Goldstein, S., Budiu, M.: NanoFabrics: spatial computing using molecular electronics. In: Proceedings of the 28th Annual International Symposium on Computer Architecture, pp. 178–189 (2001). doi:10.1109/ISCA.2001.937446

  3. DeHon A.: Nanowire-based programmable architectures. ACM JETC 1(2), 109–162 (2005). doi:10.1145/1084748.1084750

    Article  MathSciNet  Google Scholar 

  4. Snider G., Kuekes P., Williams R.S.: CMOS-like logic in defective nanoscale crossbars. Nanotechnology 15, 881–891 (2004)

    Article  Google Scholar 

  5. Gayasen, A., Vijaykrishnan, N., Irwin, M.J.: Exploring technology alternatives for nano-scale FPGA interconnects. In: DAC ’05: Proceedings of the 42nd Annual Conference on Design Automation, Anaheim, CA, pp. 921–926. ACM, New York (2005). http://doi.acm.org/10.1145/1065579.1065820

  6. Rad, R.M.P., Tehranipoor, M.: A new hybrid FPGA with nanoscale clusters and CMOS routing. In: DAC ’06: Proceedings of the 43rd Annual Conference on Design Automation, San Francisco, CA, pp. 727–730. ACM, New York (2006). http://doi.acm.org/10.1145/1146909.1147094

  7. Strukov D.B., Likharev K.K.: CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16, 888–900 (2005)

    Article  Google Scholar 

  8. Snider, G., Williams, S.: Nano/CMOS architecture using a field-programmable nanowire interconnect. Nanotechnology 18 035204–035215 (2007)

    Google Scholar 

  9. Dong C., Chen D., Haruehanroengra S., Wang W.: 3-D nFPGA: a reconfigurable architecture for 3-D CMOS/nanomaterial hybrid digital circuits. IEEE Trans. Circuits Syst. I 54(11), 2489–2501 (2007)

    Article  Google Scholar 

  10. Rueckes T., Kim K., Joselevich E., Tseng G.Y., Cheung C., Lieber C.M.: Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289(5476), 94–97 (2000). doi:10.1126/science.289.5476.94

    Article  Google Scholar 

  11. Ward, J.W., Meinhold, M., Segal, B.M., Berg, J., Sen, R., Sivarajan, R., Brock, D.K., Rueckes, T.: A nonvolatile nanoelectromechanical memory element utilizing a fabric of carbon nanotubes. In: Non-Volatile Memory Technology Symposium, Nov. 2004, pp. 34–38 (2004)

  12. Smith, R.F., Rueckes, T., Konsek, S., Ward, J.W., Brock, D.K., Segal, B.M.: Carbon nanotube based memory development and testing. In: IEEE Aerospace Conference, March 2007, pp. 1–5 (2007). doi:10.1109/AERO.2007.353104

  13. Zhang, W., Jha, N.K., Shang, L.: NATURE: a hybrid nanotube/CMOS dynamically reconfigurable architecture. In: 43rd ACM/IEEE Design Automation Conference, pp. 711–716 (2006). doi:10.1109/DAC.2006.229333

  14. Zhou, Y., Thekkel, S., Bhunia, S.: Low power FPGA design using hybrid CMOS-NEMS approach. In: ISLPED ’07: Proceedings of the 2007 International Symposium on Low Power Electronics and Design, Portland, OR, pp. 14–19. ACM, New York (2007). http://doi.acm.org/10.1145/1283780.1283785

  15. McEuen, P., Fuhrer, M., Park, H.: Single-Walled Carbon Nanotube Electronics. IEEE Trans. Nanotechnol. 1(1) 78–85 (2002)

    Google Scholar 

  16. Kang S.J. et al.: High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2(4), 230–236 (2007)

    Article  Google Scholar 

  17. Patil, N., Lin, A., Myers, E.R., Wong, H.-S.P., Mitra, S.: Integrated wafer-scale growth and transfer of directional carbon nanotubes and misaligned-carbon-nanotube-immune logic structures. In: Symposium on VLSI Technology, June 2008, pp. 205–206 (2008). doi:10.1109/VLSIT.2008.4588619

  18. Zhou W., Rutherglen C., Burke P.: Wafer scale synthesis of dense aligned arrays of single-walled carbon nanotubes. Nano Res. 1, 158–165 (2008). doi:10.1007/s12274-008-8012-9

    Article  Google Scholar 

  19. Li Y. et al.: Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Lett. 4, 317 (2004). doi:10.1021/nl035097c

    Article  Google Scholar 

  20. Liu X., Han S., Zhou C.: Novel nanotube-on-insulator (NOI) approach toward single-walled carbon nanotube devices. Nano Lett. 6(1), 34–39 (2006). doi:10.1021/nl0518369

    Article  Google Scholar 

  21. Deng, J., Patil, N., Ryu, K., Badmaev, A., Zhou, C., Mitra, S., Wong, H.-S.P.: Carbon nanotube transistor circuits: circuit-level performance benchmarking and design options for living with imperfections. In: IEEE International Solid-State Circuits Conference (ISSCC 2007), Digest of Technical Papers, Feb. 2007, pp. 70–588 (2007). doi:10.1109/ISSCC.2007.373592

  22. Massoud Y., Nieuwoudt A.: Modeling and design challenges and solutions for carbon nanotube-based interconnect in future high performance integrated circuits. ACM J. Emerg. Technol. Comput. Syst. 2, 155–196 (2006). doi:10.1145/1167943.1167944

    Article  Google Scholar 

  23. Wei B.Q., Vajtai R., Ajayan P.M.: Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 79(8), 1172–1174 (2001). doi:10.1063/1.1396632

    Article  Google Scholar 

  24. Srivastava, N., Banerjee, K.: Performance analysis of carbon nanotube interconnects for VLSI applications. In: IEEE/ACM International Conference on Computer-Aided Design (ICCAD-2005), Nov. 2005, pp. 383–390 (2005). doi:10.1109/ICCAD.2005.1560098

  25. Kaeriyama S. et al.: A nonvolatile programmable solid-electrolyte nanometer switch. IEEE J. Solid-State Circuits 40(1), 168–176 (2005). doi:10.1109/JSSC.2004.837244

    Article  Google Scholar 

  26. Ahmed E., Rose J.: The effect of LUT and cluster size on deep-submicron FPGA performance and density. IEEE Trans. VLSI 12(3), 288–298 (2004). doi:10.1109/TVLSI.2004.824300

    Article  Google Scholar 

  27. Kang S.J., Kocabas C., Kim H.S., Cao Q., Meitl M.A., Khang D.Y., Rogers J.A.: Printed multilayer superstructures of aligned single-walled carbon nanotubes for electronic applications. Nano Lett. 7(11), 3343–3348 (2007). doi:10.1021/nl071596s

    Article  Google Scholar 

  28. Pop, E.: The role of electrical and thermal contact resistance for Joule breakdown of single-wall carbon nanotube. Nanotechnology 19 295202–295207 (2008)

    Google Scholar 

  29. Boning, D.S., Nassif, S.: Models of process variations in device and interconnect. In: Design of High Performance Microprocessor Circuits. IEEE Press (2000)

  30. International Technology Roadmap for Semiconductors: http://www.itrs.net/

  31. Sentovich, E.M., et al.: SIS: A System for Sequential Circuit Synthesis. Dept. of Electrical Engineering and Computer Science. University of California, Berkeley, CA (1992)

  32. Chen, D., Cong, J.: DAOmap: a depth-optimal area optimization mapping algorithm for FPGA designs. In: International Conference on Computer-Aided Design, pp. 752–759. IEEE Computer Society, Los Alamitos (2004). http://doi.ieeecomputersociety.org/10.1109/ICCAD.2004.1382677

  33. Lin, Y., Hutton, M., He, L.: Placement and timing for FPGAs considering variations. In: FPL ’06: International Conference on Field Programmable Logic and Applications, Aug. 2006, pp. 1–7 (2006). doi:10.1109/FPL.2006.311192

  34. Sivaswamy, S., Bazargan, K.: Variation-aware routing for FPGAs. In: FPGA ’07: Proceedings of the 2007 ACM/SIGDA 15th International Symposium on Field Programmable Gate Arrays, Monterey, CA, pp. 71–79. ACM, New York (2007). http://doi.acm.org/10.1145/1216919.1216930

  35. Visweswariah, C., Ravindran, K., Kalafala, K., Walker, S.G., Narayan, S.: First-order incremental block-based statistical timing analysis. In: DAC ’04: Proceedings of the 41st Annual Conference on Design Automation, San Diego, CA, pp. 331–336. ACM, New York (2004). http://doi.acm.org/10.1145/996566.996663

  36. Devgan, A., Kashyap, C.: Block-based static timing analysis with uncertainty. In: International Conference on Computer Aided Design (ICCAD-2003), Nov. 2003, pp. 607–614 (2003). doi:10.1109/ICCAD.2003.1257873

  37. Liou, J.-J., Cheng, K.-T., Kundu, S., Krstic, A.: Fast statistical timing analysis by probabilistic event propagation. In: DAC ’01: Proceedings of the 38th Conference on Design Automation, Las Vegas, NV, pp. 661–666. ACM, New York (2001). http://doi.acm.org/10.1145/378239.379043

  38. Lemieux, G., Lewis, D.: Design of Interconnection Networks for Programmable Logic. Kluwer Academic Publishers (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Chilstedt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chilstedt, S., Dong, C. & Chen, D. Design and Evaluation of a Carbon Nanotube-Based Programmable Architecture. Int J Parallel Prog 37, 389–416 (2009). https://doi.org/10.1007/s10766-009-0105-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10766-009-0105-x

Keywords