Abstract
In the hunt to find a replacement to CMOS, material scientists are developing a wide range of nanomaterials and nanomaterial-based devices that offer significant performance improvements. One example is the Carbon Nanotube Field Effect Transistor, or CNFET, which replaces the traditional silicon channel with an array of semiconducting carbon nanotubes (CNTs). Given the increased variation and defects of nanometer-scale fabrication, and the regular nature of bottom-up self-assembly, field programmable devices are a promising initial application for such technologies. In this paper, we detail the design and evaluation of a novel nanomaterial-based architecture called FPCNA (Field Programmable Carbon Nanotube Array). New nanomaterial-based circuit building blocks are developed and characterized, including a lookup table created entirely from continuous CNT ribbons. To accurately determine the performance of these building blocks, we create variation-aware physical design tools with statistical timing analysis that can handle both Gaussian and non-Gaussian random variables. When the FPCNA architecture is evaluated using this CAD flow, we see a 2.75× performance improvement over an equivalent CMOS FPGA at a 95% yield. In addition, FPCNA offers a 5.07× footprint reduction compared to the baseline FPGA.
Similar content being viewed by others
References
Betz V., Rose J., Marquardt A.: Architecture and CAD for Deep-Submicron FPGAs. Kluwer Academic Publishers, New York, NY (1999)
Copen Goldstein, S., Budiu, M.: NanoFabrics: spatial computing using molecular electronics. In: Proceedings of the 28th Annual International Symposium on Computer Architecture, pp. 178–189 (2001). doi:10.1109/ISCA.2001.937446
DeHon A.: Nanowire-based programmable architectures. ACM JETC 1(2), 109–162 (2005). doi:10.1145/1084748.1084750
Snider G., Kuekes P., Williams R.S.: CMOS-like logic in defective nanoscale crossbars. Nanotechnology 15, 881–891 (2004)
Gayasen, A., Vijaykrishnan, N., Irwin, M.J.: Exploring technology alternatives for nano-scale FPGA interconnects. In: DAC ’05: Proceedings of the 42nd Annual Conference on Design Automation, Anaheim, CA, pp. 921–926. ACM, New York (2005). http://doi.acm.org/10.1145/1065579.1065820
Rad, R.M.P., Tehranipoor, M.: A new hybrid FPGA with nanoscale clusters and CMOS routing. In: DAC ’06: Proceedings of the 43rd Annual Conference on Design Automation, San Francisco, CA, pp. 727–730. ACM, New York (2006). http://doi.acm.org/10.1145/1146909.1147094
Strukov D.B., Likharev K.K.: CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16, 888–900 (2005)
Snider, G., Williams, S.: Nano/CMOS architecture using a field-programmable nanowire interconnect. Nanotechnology 18 035204–035215 (2007)
Dong C., Chen D., Haruehanroengra S., Wang W.: 3-D nFPGA: a reconfigurable architecture for 3-D CMOS/nanomaterial hybrid digital circuits. IEEE Trans. Circuits Syst. I 54(11), 2489–2501 (2007)
Rueckes T., Kim K., Joselevich E., Tseng G.Y., Cheung C., Lieber C.M.: Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289(5476), 94–97 (2000). doi:10.1126/science.289.5476.94
Ward, J.W., Meinhold, M., Segal, B.M., Berg, J., Sen, R., Sivarajan, R., Brock, D.K., Rueckes, T.: A nonvolatile nanoelectromechanical memory element utilizing a fabric of carbon nanotubes. In: Non-Volatile Memory Technology Symposium, Nov. 2004, pp. 34–38 (2004)
Smith, R.F., Rueckes, T., Konsek, S., Ward, J.W., Brock, D.K., Segal, B.M.: Carbon nanotube based memory development and testing. In: IEEE Aerospace Conference, March 2007, pp. 1–5 (2007). doi:10.1109/AERO.2007.353104
Zhang, W., Jha, N.K., Shang, L.: NATURE: a hybrid nanotube/CMOS dynamically reconfigurable architecture. In: 43rd ACM/IEEE Design Automation Conference, pp. 711–716 (2006). doi:10.1109/DAC.2006.229333
Zhou, Y., Thekkel, S., Bhunia, S.: Low power FPGA design using hybrid CMOS-NEMS approach. In: ISLPED ’07: Proceedings of the 2007 International Symposium on Low Power Electronics and Design, Portland, OR, pp. 14–19. ACM, New York (2007). http://doi.acm.org/10.1145/1283780.1283785
McEuen, P., Fuhrer, M., Park, H.: Single-Walled Carbon Nanotube Electronics. IEEE Trans. Nanotechnol. 1(1) 78–85 (2002)
Kang S.J. et al.: High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2(4), 230–236 (2007)
Patil, N., Lin, A., Myers, E.R., Wong, H.-S.P., Mitra, S.: Integrated wafer-scale growth and transfer of directional carbon nanotubes and misaligned-carbon-nanotube-immune logic structures. In: Symposium on VLSI Technology, June 2008, pp. 205–206 (2008). doi:10.1109/VLSIT.2008.4588619
Zhou W., Rutherglen C., Burke P.: Wafer scale synthesis of dense aligned arrays of single-walled carbon nanotubes. Nano Res. 1, 158–165 (2008). doi:10.1007/s12274-008-8012-9
Li Y. et al.: Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Lett. 4, 317 (2004). doi:10.1021/nl035097c
Liu X., Han S., Zhou C.: Novel nanotube-on-insulator (NOI) approach toward single-walled carbon nanotube devices. Nano Lett. 6(1), 34–39 (2006). doi:10.1021/nl0518369
Deng, J., Patil, N., Ryu, K., Badmaev, A., Zhou, C., Mitra, S., Wong, H.-S.P.: Carbon nanotube transistor circuits: circuit-level performance benchmarking and design options for living with imperfections. In: IEEE International Solid-State Circuits Conference (ISSCC 2007), Digest of Technical Papers, Feb. 2007, pp. 70–588 (2007). doi:10.1109/ISSCC.2007.373592
Massoud Y., Nieuwoudt A.: Modeling and design challenges and solutions for carbon nanotube-based interconnect in future high performance integrated circuits. ACM J. Emerg. Technol. Comput. Syst. 2, 155–196 (2006). doi:10.1145/1167943.1167944
Wei B.Q., Vajtai R., Ajayan P.M.: Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 79(8), 1172–1174 (2001). doi:10.1063/1.1396632
Srivastava, N., Banerjee, K.: Performance analysis of carbon nanotube interconnects for VLSI applications. In: IEEE/ACM International Conference on Computer-Aided Design (ICCAD-2005), Nov. 2005, pp. 383–390 (2005). doi:10.1109/ICCAD.2005.1560098
Kaeriyama S. et al.: A nonvolatile programmable solid-electrolyte nanometer switch. IEEE J. Solid-State Circuits 40(1), 168–176 (2005). doi:10.1109/JSSC.2004.837244
Ahmed E., Rose J.: The effect of LUT and cluster size on deep-submicron FPGA performance and density. IEEE Trans. VLSI 12(3), 288–298 (2004). doi:10.1109/TVLSI.2004.824300
Kang S.J., Kocabas C., Kim H.S., Cao Q., Meitl M.A., Khang D.Y., Rogers J.A.: Printed multilayer superstructures of aligned single-walled carbon nanotubes for electronic applications. Nano Lett. 7(11), 3343–3348 (2007). doi:10.1021/nl071596s
Pop, E.: The role of electrical and thermal contact resistance for Joule breakdown of single-wall carbon nanotube. Nanotechnology 19 295202–295207 (2008)
Boning, D.S., Nassif, S.: Models of process variations in device and interconnect. In: Design of High Performance Microprocessor Circuits. IEEE Press (2000)
International Technology Roadmap for Semiconductors: http://www.itrs.net/
Sentovich, E.M., et al.: SIS: A System for Sequential Circuit Synthesis. Dept. of Electrical Engineering and Computer Science. University of California, Berkeley, CA (1992)
Chen, D., Cong, J.: DAOmap: a depth-optimal area optimization mapping algorithm for FPGA designs. In: International Conference on Computer-Aided Design, pp. 752–759. IEEE Computer Society, Los Alamitos (2004). http://doi.ieeecomputersociety.org/10.1109/ICCAD.2004.1382677
Lin, Y., Hutton, M., He, L.: Placement and timing for FPGAs considering variations. In: FPL ’06: International Conference on Field Programmable Logic and Applications, Aug. 2006, pp. 1–7 (2006). doi:10.1109/FPL.2006.311192
Sivaswamy, S., Bazargan, K.: Variation-aware routing for FPGAs. In: FPGA ’07: Proceedings of the 2007 ACM/SIGDA 15th International Symposium on Field Programmable Gate Arrays, Monterey, CA, pp. 71–79. ACM, New York (2007). http://doi.acm.org/10.1145/1216919.1216930
Visweswariah, C., Ravindran, K., Kalafala, K., Walker, S.G., Narayan, S.: First-order incremental block-based statistical timing analysis. In: DAC ’04: Proceedings of the 41st Annual Conference on Design Automation, San Diego, CA, pp. 331–336. ACM, New York (2004). http://doi.acm.org/10.1145/996566.996663
Devgan, A., Kashyap, C.: Block-based static timing analysis with uncertainty. In: International Conference on Computer Aided Design (ICCAD-2003), Nov. 2003, pp. 607–614 (2003). doi:10.1109/ICCAD.2003.1257873
Liou, J.-J., Cheng, K.-T., Kundu, S., Krstic, A.: Fast statistical timing analysis by probabilistic event propagation. In: DAC ’01: Proceedings of the 38th Conference on Design Automation, Las Vegas, NV, pp. 661–666. ACM, New York (2001). http://doi.acm.org/10.1145/378239.379043
Lemieux, G., Lewis, D.: Design of Interconnection Networks for Programmable Logic. Kluwer Academic Publishers (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chilstedt, S., Dong, C. & Chen, D. Design and Evaluation of a Carbon Nanotube-Based Programmable Architecture. Int J Parallel Prog 37, 389–416 (2009). https://doi.org/10.1007/s10766-009-0105-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10766-009-0105-x