Chromium (VI)-induced hormesis and genotoxicity are mediated through oxidative stress in root cells of Allium cepa L. | Plant Growth Regulation Skip to main content
Log in

Chromium (VI)-induced hormesis and genotoxicity are mediated through oxidative stress in root cells of Allium cepa L.

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Chromium (VI) genotoxicity was evaluated in Allium bioassay by using different treatment protocols. Treatment of bulbs of Allium cepa L. with Cr(VI) at a range of concentrations for 5 days (120 h) exhibited low dose (12.5 μM) stimulation and high dose (25–200 μM) inhibition of root growth apparently indicating hormesis. Inhibition of root growth was correlated with the dose-dependent increase in generation of reactive oxygen species (ROS), cell death, lipid peroxidation, repression of antioxidative enzymes (catalase, superoxide dismutase, ascorbate peroxidase), induction of DNA damage, chromosome aberrations or micronuclei in root cells. The above effects were, however, reversed when the duration of Cr(VI) treatment was limited to 3–24 h followed by recovery in tap water for 4 days that resulted in the dose-dependent stimulation of root growth, mitosis and increased activity of the antioxidative enzymes that obliterated oxidative stress and genotoxicity. The above Cr(VI)-induced stimulation of root growth was effectively countered by pre- or post-treatments of dimethylthiourea, a ROS-scavenger. These findings underscored that Cr(VI), depending on the magnitude of the dose (concentration × time), could either be stimulatory or inhibitory for root growth that underlined the crucial role of ROS having obvious implications in agriculture, post harvest technology and human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

CA:

Chromosome aberration

CAT:

Catalase

DMTU:

Dimethylthiourea

EDTA:

Ethylenediamine-tetra acetic acid

FW:

Fresh weight

GPX:

Guaiacol peroxidase

LMPA:

Low melting point agarose

MDA:

Malondialdehyde

MI:

Mitotic index

MN:

Micronucleus

NBT:

Nitroblue tetrazolium

OTM:

Olive tail moment

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TBA:

Thiobarbituric acid

TCA:

Trichloroacetic acid

References

  • Achary VMM, Panda BB (2010) Aluminium-induced DNA-damage and adaptive response to genotoxic stress in plant cells are mediated through reactive oxygen intermediates. Mutagenesis 25:201–209

    Article  Google Scholar 

  • Achary VMM, Jena S, Panda KK, Panda BB (2008) Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L. Ecotoxicol Environ Saf 70:300–310

    Article  PubMed  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Agutter PS (2008) Elucidating the mechanism(s) of hormesis at the cellular level: the universal cell response. Am J Pharmacol Toxicol 3:100–110

    Article  Google Scholar 

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signalling in plants. J Plant Biol 51:167–173

    Article  CAS  Google Scholar 

  • Aiyar J, Buerkovits HJ, Floyd RA, Borges K (1991) Reaction of chromium (VI) with glutathione or with hydrogen peroxide: identification of reactive intermediates and their role in chromium (VI)-induced DNA damage. Environ Health Perspect 92:53–62

    Article  PubMed  CAS  Google Scholar 

  • Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 9:773–784

    Article  Google Scholar 

  • Baker CJ, Mock NM (1994) An improved method for monitoring cell death in cell suspension and leaf disc assays using Evans blue. Plant Cell Tissue Organ Cult 39:7–12

    Article  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismuatse: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  • Belz RG, Cedergreen N, Duke SO (2011) Herbicide hormesis—can it be useful in crop production? Weed Res 51:321–332

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bray CM, West CE (2005) DNA repair mechanisms in plants: crucial sensors and effectors for the maintenance of genome integrity. New Phytol 168:511–528

    Article  PubMed  CAS  Google Scholar 

  • Bryant HE, Ying S, Helleday T (2006) Homologous recombination is involved in repair of chromium-induced DNA damage in mammalian cells. Mutat Res 599:116–123

    Article  PubMed  CAS  Google Scholar 

  • Calabrese EJ (2005) Paradigm lost, paradigm found: the re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. Environ Pollut 138:378–411

    Article  CAS  Google Scholar 

  • Calabrese EJ (2009) Getting the dose–response wrong: why hormesis became marginalized and the threshold model accepted. Arch Toxicol 83:227–247

    Article  PubMed  CAS  Google Scholar 

  • Calabrese EJ, Blain RB (2004) Metals and hormesis. J Environ Monit 6:14–19

    Article  Google Scholar 

  • Calabrese EJ, Blain RB (2009) Hormesis and plant biology. Environ Pollut 157:42–48

    Article  PubMed  CAS  Google Scholar 

  • Casadevall M, da Cruz Fresco P, Kortenkamp A (1999) Chromium(VI)-mediated DNA damage: oxidative pathways resulting in the formation of DNA breaks and abasic sites. Chem-Biol Interact 123:117–132

    Article  PubMed  CAS  Google Scholar 

  • Cedergreen N, Streibig JC, Kudsk P, Mathiassen SK, Duke SO (2007) The occurrence of hormesis in plants and algae. Dose-Response 5:150–162

    Article  CAS  Google Scholar 

  • Cervantes C, Campos-Garcia J, Devars S, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman JC (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty R, Mukherjee AK, Mukherjee A (2009) Evaluation of genotoxicity of coal fly ash in Allium cepa root cells by combining comet assay with the Allium test. Environ Monitor Assess 53:351–357

    Article  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalase and peroxidases. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Chen GX, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in enzymatic and molecular properties. Plant Cell Physiol 30:987–998

    CAS  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxided dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Di Salvatore M, Carafa AM, Carratù G (2008) Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: a comparison of two growth substrates. Chemosphere 73:1461–1464

    Article  PubMed  Google Scholar 

  • Diwan H, Khan I, Ahmad A, Iqbal M (2010) Induction of phytochelatins and antioxidant defence system in Brassica juncea and Vigna radiata in response to chromium treatments. Plant Growth Regul 61:97–107

    Article  CAS  Google Scholar 

  • Duan P, Zhai T, Xu C, Ding J, Chen Y (2013) A simple and effective method for detecting toxicity of chromium trioxide on Vicia faba. Eur Food Res Technol 236:517–521

    Article  CAS  Google Scholar 

  • Eleftheriou EP, Adamakis I-DS, Melissa P (2012) Effects of hexavalent chromium on microtubule organization, ER distribution and callose deposition in root tip cells of Allium cepa L. Protoplasma 249:401–416

    Article  PubMed  CAS  Google Scholar 

  • Eleftheriou EP, Adamakis I-DS, Fatsiou M, Panteris E (2013) Hexavalent chromium disrupts mitosis by stabilizing microtubules in Lens culinaris Moench. root tip cells. Physiol Plant 147:169–180

    Article  PubMed  CAS  Google Scholar 

  • Fiskesjo G (1988) The Allium test—an alternative in environmental studies: the relative toxicity of metal ions. Mutat Res 197:243–260

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  CAS  Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research. Wiley, New York

    Google Scholar 

  • Gratao PL, Polle A, Lea P, Azevedo RA (2005) Making life of heavy metal stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  CAS  Google Scholar 

  • Ha L, Ceryak S, Patierno SR (2003) Chromium (VI) activates ataxia telangiectasia mutated (ATM) protein: requirement of ATM for both apoptosis and recovery from terminal growth arrest. J Chem Biol 278:17885–17894

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC, Aruoma O (1987) The deoxyribose method: a simple ‘test tube’ assay for determination of rate constants for reactions of hydroxyl radicals. Anal Biochem 165:215–219

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M, Dearfield K, Kasper P, Lovell D, Martus HJ, Thybaud V (2011) Compilation and use of genetic toxicity historical control data. Mutat Res 723:87–90

    Article  PubMed  CAS  Google Scholar 

  • Kiba A, Miyake C, Toyoda K, Ichinose Y, Yamada T, Shiraishi T (1997) Superoxide generation in extracts from isolated plant cell walls is regulated by fungal signal molecules. Phytopathology 87:846–852

    Article  PubMed  CAS  Google Scholar 

  • Kumaravel TS, Vilhar B, Faux SP, Jha AN (2009) Comet assay measurements: a perspective. Cell Biol Toxicol 25:53–64

    Article  PubMed  CAS  Google Scholar 

  • Leme DM, Marin-Morales MA (2009) Allium cepa test in environmental monitoring: a review on its application. Mutat Res 682:71–81

    Article  PubMed  CAS  Google Scholar 

  • Leonard SS, Harris GK, Shi X (2004) Metal-induced oxidative stress and signal transduction. Free Rad Biol Med 37:1921–1942

    Article  PubMed  CAS  Google Scholar 

  • Liszkay A, van der Zalm AE, Schopfer P (2004) Production of reactive oxygen intermediates (O ·2 , H2O2 and ·OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiol 136:3114–3123

    Article  PubMed  CAS  Google Scholar 

  • Liu DH, Jiang WS, Li W (1992) Effects of trivalent and hexavalent chromium on root growth and cell division of Allium cepa. Hereditas 117:23–29

    Article  CAS  Google Scholar 

  • Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787

    Article  PubMed  CAS  Google Scholar 

  • Micera G, Dessi A (1988) Chromium adsorption by plant roots and formation of long-lived Cr(V) species: an ecological hazard? J Inorg Biochem 34:157–166

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Nickens KP, Patierno SR, Ceryak S (2010) Chromium genotoxicity: a double-edged sword. Chem Biol Interact 188:276–288

    Article  PubMed  CAS  Google Scholar 

  • Nriagu JO (1988) Production and uses of chromium. In: Nriagu JO, Nieboer E (eds) Chromium in the natural and human environments. Wiley, New York, pp 81–103

    Google Scholar 

  • Oliveira H (2012) Chromium as an environmental pollutant: insights on induced plant toxicity. J Bot. doi:10.1155/2012/375843 (in press)

  • Panda SK (2007) Chromium-mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. J Plant Physiol 164:1419–1428

    Article  PubMed  CAS  Google Scholar 

  • Panda KK, Achary VMM, Krishnaveni R, Padhi BK, Sarangi SN, Sahu SN, Panda BB (2011) In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol In Vitro 25:1097–1105

    Article  PubMed  CAS  Google Scholar 

  • Pandey V, Dixit V, Shyam R (2005) Antioxidative responses in relation to growth of mustard (Brassica juncea cv. Pusa Jaikisan) plants exposed to hexavalent chromium. Chemosphere 61:40–47

    Article  PubMed  CAS  Google Scholar 

  • Pandey V, Dixit V, Shyam R (2009) Chromium (VI) induced changes in growth and root plasma membrane redox activities in pea plants. Protoplasma 235:49–55

    Article  PubMed  CAS  Google Scholar 

  • Patnaik AR, Achary VMM, Panda BB (2011) Comet assay to assess DNA damage and genotoxic stress in plants. In: Roy BK, Chaudhary BR, Sinha RP (eds) Plant Genome: Biodiversity, Conservation and Manipulation. Narosa Publications, New Delhi, pp 17–29

    Google Scholar 

  • Patra J, Sahoo MK, Panda BB (2003) Persistence and prevention of aluminium- and paraquat-induced adaptive response to methyl mercuric chloride in plant cells in vivo. Mutat Res 538:51–61

    Article  PubMed  CAS  Google Scholar 

  • Radak Z, Chung HY, Kotai E, Taylor AW, Goto S (2008) Exercise, oxidative stress and hormesis. Age Res Rev 7:34–42

    Article  CAS  Google Scholar 

  • Rank J, Nielsen MN (1994) Evaluation of the Allium anaphase-telophase test in relation to genotoxicity screening of industrial wastewater. Mutat Res 312:17–24

    Article  PubMed  CAS  Google Scholar 

  • Reichheld J-F, Vernoux T, Lardon F, Mantagu MV, Inze D (1999) Specific checkpoints regulate plant cell cycle progression in response to oxidative stress. Plant J 17:647–656

    Article  CAS  Google Scholar 

  • Rodriguez E, Azevedo R, Fernandes P, Santos C (2011) Cr(VI) induces DNA damage, cell cycle arrest and polyploidization: a flow cytometric and comet assay study in Pisum sativum. Chem Res Toxicol 24:1040–1047

    Article  PubMed  CAS  Google Scholar 

  • Rozman KK, Doull J, Hayes WJ Jr (2010) Dose and time determining, and other factors influencing, toxicity. In: Krieger R (ed) Hayes’ handbook of pesticide toxicology. Elsevier, New York, pp 3–101

    Chapter  Google Scholar 

  • Shama G, Alderson P (2005) UV hormesis in fruits: a concept ripe for commercialisation. Trends Food Sci Tech 16:28–136

    Article  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Intern 31:739–753

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2008) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  PubMed  Google Scholar 

  • Shi X, Dalal NS (1990) Evidence for a fenton-type mechanism for the generation of ·OH radicals in the reduction of Cr(VI) in cellular media. Arch Biochem Biophys 281:90–95

    Article  PubMed  CAS  Google Scholar 

  • Shulaev V, Oliver DJ (2006) Metabolic and proteomic markers for oxidative stress. New tools for reactive oxygen species research. Plant Physiol 141:367–372

    Article  PubMed  CAS  Google Scholar 

  • Stearns DM, Courtney KD, Giangrande PH, Phieffer LS, Wetterhahn KE (1994) Chromium(VI) reduction by ascorbate: role of reactive intermediates in DNA damage in vitro. Environ Health Perspect 102:21–25

    PubMed  CAS  Google Scholar 

  • Stebbing ARD (1982) Hormesis: the stimulation of growth by low levels of inhibitors. Sci Total Environ 22:213–234

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama M (1992) Role of physiological antioxidants in chromium (VI)-induced cellular injury. Free Rad Biol Med 12:397–407

    Article  PubMed  CAS  Google Scholar 

  • Ueno S, Sugiyama M, Susa N, Furukawa Y (1995) Effect of dimethylthiourea on chromium (VI)-induced DNA single-strand breaks in Chinese hamster V-79 cells. Mutat Res Lett 346:247–253

    Article  CAS  Google Scholar 

  • Ünyayar S, Çelik A, Çekiç FO, Gözel A (2006) Cadmium-induced genotoxicity, cytotoxicity and lipid peroxidation in Allium sativum and Vicia faba. Mutagenesis 21:77–81

    Article  PubMed  Google Scholar 

  • Wakeman TP, Xu B (2006) ATR regulates hexavalent chromium-induced S-phase checkpoint through phosphorylation of SMC1. Mutat Res 610:14–20

    Article  PubMed  CAS  Google Scholar 

  • Wang W (1991) Literature review on higher plants for toxicity testing. Water Air Soil Pollut 59:381–400

    Article  CAS  Google Scholar 

  • Wang X, Sun C, Gao S, Wang L, Shuokui H (2001) Validation of germination rate and root elongation as indicator to assess phytotoxicity with Cucumis sativus. Chemosphere 44:1711–1721

    Article  PubMed  CAS  Google Scholar 

  • Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present research was carried out through fellowships awarded to ARP and VMMA, respectively, from UGC and CSIR, New Delhi. The authors are thankful to the authorities of Berhampur University for providing administrative and infrastructural facilities to carry out the research and to Dr. B. B. Nayak, IMMT, Bhubaneswar for help with analysis of Cr(VI) in experimental solutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brahma B. Panda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patnaik, A.R., Achary, V.M.M. & Panda, B.B. Chromium (VI)-induced hormesis and genotoxicity are mediated through oxidative stress in root cells of Allium cepa L.. Plant Growth Regul 71, 157–170 (2013). https://doi.org/10.1007/s10725-013-9816-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-013-9816-5

Keywords