Vector quantization using the improved differential evolution algorithm for image compression | Genetic Programming and Evolvable Machines Skip to main content
Log in

Vector quantization using the improved differential evolution algorithm for image compression

  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

Vector quantization (VQ) is a popular image compression technique with a simple decoding architecture and high compression ratio. Codebook designing is the most essential part in vector quantization. Linde–Buzo–Gray (LBG) is a traditional method of generation of VQ codebook which results in lower PSNR value. A codebook affects the quality of image compression, so the choice of an appropriate codebook is a must. Several optimization techniques have been proposed for global codebook generation to enhance the quality of image compression. In this paper, a novel algorithm called IDE-LBG is proposed which uses improved differential evolution algorithm coupled with LBG for generating optimum VQ codebooks. The proposed IDE works better than the traditional DE with modifications in the scaling factor and the boundary control mechanism. The IDE generates better solutions by efficient exploration and exploitation of the search space. Then the best optimal solution obtained by the IDE is provided as the initial codebook for the LBG. This approach produces an efficient codebook with less computational time and the consequences include excellent PSNR values and superior quality reconstructed images. It is observed that the proposed IDE-LBG find better VQ Codebooks as compared to IPSO-LBG, BA-LBG and FA-LBG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. R.M. Gray, Vector quantization. IEEE Signal Process. Mag. 1(2), 4–29 (1984)

    Google Scholar 

  2. D. Ailing, C. Guo, An adaptive vector quantization approach for image segmentation based on SOM network. Neurocomputing 149, 48–58 (2015)

    Article  Google Scholar 

  3. H.B. Kekre, Speaker recognition using vector quantization by MFCC and KMCG clustering algorithm, in IEEE International Conferences on Communication, Information & Computing Technology (ICCICT), IEEE, Mumbai, 2012, pp. 1–5

  4. C.W. Tsai, C.Y. Lee, M.C. Chiang, C.S. Yang, A fast VQ codebook generation algorithm via pattern reduction. Pattern Recognit. Lett. 30, 653–660 (2009)

    Article  Google Scholar 

  5. S.K. Frank, R.E. Aaron, J. Hwang, R.R. Lawrence, Report: a vector quantization approach to speaker recognition. AT&T Tech. J. 66(2), 14–16 (2014)

    Google Scholar 

  6. C.H. Chan, M.A. Tahir, J. Kittler, M. Pietikäinen, Multiscale local phase quantization for robust component-based face recognition using kernel fusion of multiple descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1164–1177 (2013)

    Article  Google Scholar 

  7. G.E. Tsekouras, D. Darzentas, I. Drakoulaki, A.D. Niros, Fast fuzzy vector quantization, in IEEE International Conference on Fuzzy Systems (FUZZ), IEEE, Barcelona, 2010, pp. 1–8

  8. Y. Linde, A. Buzo, R.M. Gray, An algorithm for vector quantizer design. IEEE Trans. Commun. 28(1), 702–710 (1980)

    Article  Google Scholar 

  9. G.E. Tsekouras, D.M. Tsolakis, Fuzzy clustering-based vector quantization for image compression, in Computational Intelligence in Image Processing, ed. by A. Chatterjee, P. Siarry (Springer, Berlin, 2012), pp. 93–105

    Google Scholar 

  10. G. Patane, M. Russo, The enhanced LBG algorithm. Neural Netw. 14, 1219–1237 (2002)

    Article  Google Scholar 

  11. A. Rajpoot, A. Hussain, K. Saleem, Q. Qureshi, A novel image coding algorithm using ant colony system vector quantization, in International Workshop on Systems, Signals and Image Processing, Poznan, Poland, 2004, pp. 13–15

  12. C.W. Tsaia, S.P. Tsengb, C.S. Yangc, M.C. Chiangb, PREACO: a fast ant colony optimization for codebook generation. Appl. Soft Comput. 13, 3008–3020 (2013)

    Article  Google Scholar 

  13. M. Kumar, R. Kapoor, T. Goel, Vector quantization based on self-adaptive particle swarm optimization. Int. J. Nonlinear Sci. 9(3), 311–319 (2010)

    MATH  Google Scholar 

  14. H.M. Feng, C.Y. Chen, F. Ye, Evolutionary fuzzy particle swarm optimization vector quantization learning scheme in image compression. Expert Syst. Appl. 32, 213–222 (2007)

    Article  Google Scholar 

  15. Y. Wang, X.Y. Feng, X.Y. Huang, D.B. Pu, W.G. Zhou, Y.C. Liang et al., A novel quantum swarm evolutionary algorithm and its applications. Neurocomputing 70, 633–640 (2007)

    Article  Google Scholar 

  16. S. Yang, R. Wu, M. Wang, L. Jiao, Evolutionary clustering based vector quantization and SPIHT coding for image compression. Pattern Recognit. Lett. 31, 1773–1780 (2010)

    Article  Google Scholar 

  17. M.H. Horng, Vector quantization using the firefly algorithm for image compression. Expert Syst. Appl. 39(1), 1078–1091 (2012)

    Article  Google Scholar 

  18. M.H. Horng, T.W. Jiang, Image vector quantization algorithm via honey bee mating optimization. Expert Syst. Appl. 38(3), 1382–1392 (2011)

    Article  Google Scholar 

  19. P.K. Tripathy, R.K. Dash, C.R. Tripathy, A dynamic programming approach for layout optimization of interconnection networks. Eng. Sci. Technol. 18, 374–384 (2015)

    Google Scholar 

  20. D. Tsolakis, G.E. Tsekouras, A.D. Niros, A. Rigos, On the systematic development of fast fuzzy vector quantization for gray scale image compression. Neural Netw. 36, 83–96 (2012)

    Article  MATH  Google Scholar 

  21. G.E. Tsekouras, A fuzzy vector quantization approach to image compression. Appl. Math. Comput. 167(1), 539–5605 (2005)

    MathSciNet  MATH  Google Scholar 

  22. C. Ping-Yi, J.T. Tsai, J.H. Chou, W.H. Ho, H.Y. Shi, S.H. Chen, Improved PSO-LBG to design VQ codebook, in 2013 Proceedings of InSICE Annual Conference (SICE), 2013 Sep 14, IEEE, pp. 876–879

  23. S.M. Hosseini, A. Naghsh-Nilchi, Medical ultrasound image compression using contextual vector quantization. Comput. Biol. Med. 42, 743–750 (2012)

    Article  Google Scholar 

  24. B. Huanga, Y. Wanga, J. Chen, ECG compression using the context modeling arithmetic coding with dynamic learning vector–scalar quantization. Biomed. Signal Process. Control 8, 59–65 (2013)

    Article  Google Scholar 

  25. C. Karri, U. Jena, Fast vector quantization using a Bat algorithm for image compression. Eng. Sci. Technol. Int. J. 19(2), 769–781 (2016). ISSN 2215-0986. https://doi.org/10.1016/j.jestch.2015.11.003

  26. N. Sanyal, A. Chatterjee, S. Munshi, Modified bacterial foraging optimization technique for vector quantization-based image compression, in Computational Intelligence in Image Processing, 2013. Springer, Berlin, pp. 131–152

  27. K. Chiranjeevi, U.R. Jena, Image compression based on vector quantization using cuckoo search optimization technique. Ain Shams Eng. J. 9(4), 1417–1431 (2018)

    Article  MATH  Google Scholar 

  28. S.-J. Wu, P.-T. Chow, Genetic algorithms for nonlinear mixed discrete-integer optimization problems via meta-genetic parameter optimization. Eng. Optim. 24(2), 137–159 (1995)

    Article  Google Scholar 

  29. R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in Proceedings of the 6th International Symposium on Micro Machine and Human Science (MHS’95), IEEE, Nagoya, Japan, October 1995, pp. 39–43

  30. E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

    Article  MATH  Google Scholar 

  31. M. Dorigo, G.D. Caro, Ant algorithms for discrete optimization. Artif. Life 5(3), 137–172 (1999)

    Article  Google Scholar 

  32. M. Dorigo, L.M. Gambardella, Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evolut. Comput. 1(1), 53–66 (1997)

    Article  Google Scholar 

  33. C. Zhang, H.-P. Wang, Mixed-discrete nonlinear optimization with simulated annealing. Eng. Optim. 21(4), 277–291 (1993)

    Article  Google Scholar 

  34. E.H.L. Aarts, J.H.M. Korst, P.J.M. van Laarhoven, Simulated annealing, in Local Search in Combinatorial Optimization, 1997, pp. 91–120

  35. Nag S. Adaptive Plant Propagation Algorithm for Solving Economic Load Dispatch Problem. arXiv preprint arXiv:1708.07040. 4 Aug 2017

  36. Nag S. A Type II Fuzzy Entropy Based Multi-level Image Thresholding Using Adaptive Plant Propagation Algorithm. arXiv preprint arXiv:1708.09461. 23 Aug 2017

  37. J.C. Bansal, H. Sharma, S.S. Jadon, Artificial bee colony algorithm: a survey. Int. J. Adv. Intell. Paradig. 5(1), 123–159 (2013)

    Article  Google Scholar 

  38. X.S. Yang, Firefly algorithms for multimodal optimization, LNCS, vol. 5792 (Springer, Heidelberg, 2009), pp. 169–178

    MATH  Google Scholar 

  39. D.P. Rini, S.M. Shamsuddin, S.S. Yuhaniz, Particle swarm optimization: technique, system and challenges. Int. J. Comput. Appl. 14(1), 19–27 (2011)

    Google Scholar 

  40. G.T. Chandra Sekhar, R.K. Sahu, A.K. Baliarsingh, S. Panda, Load frequency control of power system under deregulated environment using optimal firefly algorithm. Int. J. Electr. Power Energy Syst. 74, 195–211 (2016)

    Article  Google Scholar 

  41. X.S. Yang, A new metaheuristic bat-inspired algorithm, in Nature Inspired Cooperative Strategies for Optimization (NISCO 2010), vol. 284, Studies in Computational Intelligence, Springer, Berlin, 2010, pp. 65–74

  42. Q. Chen, J.G. Yang, J. Gou, Image compression method using improved PSO vector quantization, in First International Conference on Neural Computation (ICNC 2005), vol. 3612, Lecture Notes on Computer Science, 2005, pp. 490–495

  43. R. Storn, K. Price, Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  44. Rainer Storn, Kenneth Price, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  45. D. Corne, M. Dorigo, F. Glover, D. Dasgupta, P. Moscato, R. Poli, K.V. Price, New ideas in optimization (McGraw-Hill Ltd, London, 1999)

    Google Scholar 

  46. Ioan Cristian Trelea, The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf. Process. Lett. 85(6), 317–325 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  47. S. Chen et al., Global convergence analysis of the bat algorithm using a markovian framework and dynamical system theory. Expert Syst. Appl. 114, 173–182 (2018)

    Article  Google Scholar 

  48. X. He et al., Global convergence analysis of the flower pollination algorithm: a discrete-time Markov chain approach. Proc. Computc. Sci. 108, 1354–1363 (2017)

    Article  Google Scholar 

  49. X.-S. Yang, Nature-inspired metaheuristic algorithms (Luniver Press, New York, 2010)

    Google Scholar 

  50. M. Črepinšek, S.H. Liu, M. Mernik, Replication and comparison of computational experiments in applied evolutionary computing: common pitfalls and guidelines to avoid them. Appl. Soft Comput. 19, 161–170 (2014)

    Article  Google Scholar 

  51. S. García et al., A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J. Heuristics 15(6), 617 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author wishes to acknowledge Jadavpur University for providing the license of the Matlab version used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayan Nag.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nag, S. Vector quantization using the improved differential evolution algorithm for image compression. Genet Program Evolvable Mach 20, 187–212 (2019). https://doi.org/10.1007/s10710-019-09342-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10710-019-09342-8

Keywords

Navigation